

your reliable partner

EAS®-compact®

We safeguard the movements of this world

Specialists in power transmission for more than a century

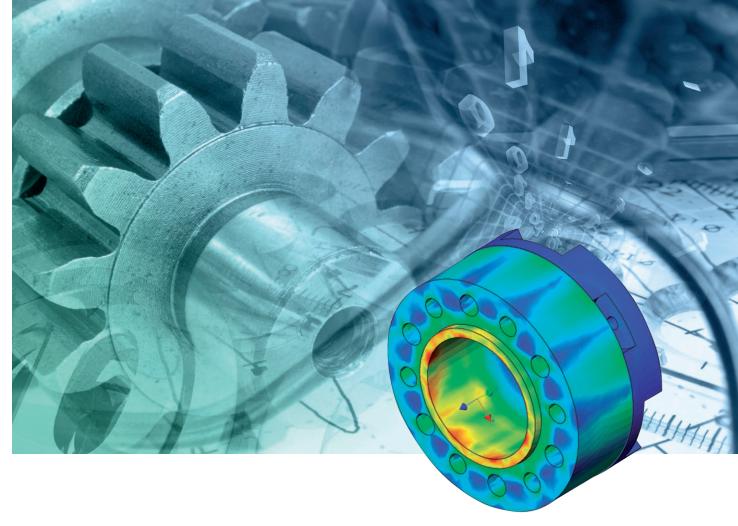
mayr® power transmission is one of the most traditional and yet most innovative German companies in the field of power transmission. From modest beginnings in the year 1897, the family enterprise from the Allgäu region has developed into the world market leader. Today, approximately 700 employees work at the headquarters in Mauerstetten; about 1200 employees work for the company worldwide.

An unsurpassed standard product range

mayr® power transmission offers a wide variety of torque limiters, safety brakes, backlash-free shaft misalignment compensation couplings and high-quality DC drives. Regarding customer-specific requirements, too, the company possesses the expertise to develop customized and economical solutions. This is why numerous renowned machine manufacturers trust in holistic solutions by mayr® power transmission.

Represented worldwide

With eight subsidiaries in Germany, sales offices in the USA, France, Great Britain, Italy, Singapore and Switzerland as well as 36 additional country representatives, $mayr^{\circledast}$ is available in all important industrial areas, guaranteeing optimum customer service around the globe.


Never compromise on safety

We make no compromises where safety is concerned. Only top products of a perfect quality guarantee that no people are injured or machines damaged in case of malfunctions, collisions and other hazardous situations. The safety of your employees and machines is our motivation to always provide the best and most reliable clutches, couplings or brakes.

mayr® power transmission holds numerous ground-breaking patents, and is the global market or technological leader for

- application-optimised safety brakes, for example for passenger elevators, stage technology and gravity-loaded axes
- torque limiters to protect against expensive overload damage and production losses and
- backlash-free servo couplings.

Tradition and innovation – the best of both worlds

Tradition and innovation do not contradict each other - on the contrary. They are the two supporting pillars which have guaranteed stability and reliability for generations. Long-term stability, independence as well as a good reputation and satisfied customers are important values for a family enterprise rich in tradition.

Therefore, we place emphasis on:

- Tested product quality,
- Optimum customer service,
- Comprehensive know-how,
- Global presence.
- Successful innovations and
- Effective cost management.

By pursuing our own objective of always offering our customers the technologically most advanced and most economical solution, we have been able to gain the trust of many leading industrial companies from all branches and from all over the world as a reliable partner.

Place your trust in our know-how and our more than 50 years of experience in the areas of torque limiters, safety brakes and shaft couplings.

Tested quality and reliability

mayr® products are subject to meticulous quality inspections. These include quality assurance measures during the design process as well as a comprehensive final inspection. Only the best, tested quality leaves our place of manufacture. All products are rigorously tested on calibrated test stands, and adjusted precisely to the requested values. An electronic database in which the measurement values are archived together with the associated serial numbers guarantees 100 % traceability. On request, we confirm the product characteristics with a test protocol.

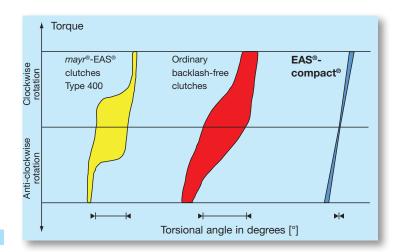
The certification of our quality management according to DIN EN ISO 9001:2000 confirms the quality-consciousness of our colleagues at every level of the company.

EAS®-compact® - the economically viable protection for machines

Function

If the set limit torque is exceeded, the clutch disengages. The torque drops immediately. A mounted limit switch registers the disengagement movement and switches off the drive. The limit switch signal can also be used for further control functions.

After the malfunction has been rectified, the EAS®-compact® ratchetting clutches and the EAS®-compact® synchronous clutches automatically re-engage (for a detailed description of the re-engagement behaviour, see page 5).


Overload clutches of the series EAS®-compact® -F separate the drive end and the output side completely and remain in this state until they are intentionally re-engaged by hand or via a suitable device. Detailed description see catalogue K.4190.V__.EN.

The EAS®-compact® matrix for success

Product characteristics	Your advantages	Your benefits
Backlash-free torque transmission	Long lifetime, Low wear	Lowest maintenance effort
Safe, readable torque adjustment	Simple installation and operation	Time-saving during initial operation
High performance density	Low mass moment of inertia, compact construction	High machine dynamic
Convenient torque course in the drive line on overload	Optimised dimensioning	Effective and efficient machine construction

EAS®-compact® - the backlash-free principle



Backlash means:

- The torsional angle between the input and output of the clutch
- Also known an "torsional backlash"
- Not to be confused with the transmission backlash from the shaft onto the hub
- At mayes, backlash-free means:
 Backlash > 0
 (see diagram)

EAS®-compact®/EAS®-NC Ratchetting clutch

- When the set limit torque is reached, the clutch disengages; the torque drops immediately.
- The clutch ratchets.
- After the cause of overload has been removed, the clutch automatically re-engages into the next of the series of ball detents.
- The clutch is ready for operation again.

EAS®-compact®/EAS®-NC Synchronous clutch

- When the set limit torque is reached, the clutch disengages; the torque drops immediately.
- After the cause of overload has been removed, the clutch re-engages automatically after 360 angular degrees. Other cycle sequences, for example 180 degrees, are also available.
- The clutch is ready for operation again.

Contents

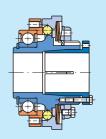
	Page
EAS®-compact® ratchetting clutches EAS®-compact® synchronous clutches	
Torque range: 5 to 1500 Nm	
Description	5
Summary of constructional designs	6
Data sheets	
EAS®-compact® short hub	8
EAS®-compact® double bearing design	10
EAS®-compact® long protruding hub	12
EAS®-compact® with steel bellows coupling	14
EAS®-compact® torsionally rigid	16
EAS®-compact® lastic backlash-free	18

For small torques:

EAS®-NC ratchetting clutches EAS®-NC synchronous clutches

Torque range: 0.65 to 15 Nm

Data sheets


•	EAS®-NC short hub	20
•	EAS®-NC long protruding hub	20
•	EAS®-NC double bearing design	22
•	EAS®-NC with steel bellows coupling	24

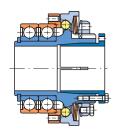
EAS®-compact® Options	26
Technical Explanations	28
Frictionally-Locking Transmittable Torques	34
Limit Switch	35
Installation Examples	38

Summary of constructional designs EAS®-compact® ratchetting clutch/ synchronous clutch

EAS®-compact® short hub

Torque: 5 to 1500 Nm

Sizes 01 to 4 Type 490._ _ _.0 Flange clutch for direct installation of the drive element with the resulting radial force approximately in the bearing centre

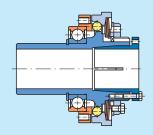

See installation example, Fig. 1, page 54

Also available in rustproof design! With cone bushing With keyway

Type 490._1_.0 Type 490._2_.0

Page 8

EAS®-compact® double bearing design


Torque: 5 to 1500 Nm

Sizes 01 to 4 Type 490.___.2 Flange clutch with a stable, double bearing for the drive element

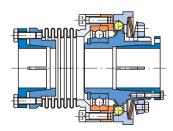
With cone bushing Type 490._1_.2 With keyway Type 490._2_.2

Page 10

EAS®-compact® long protruding hub

Torque: 5 to 1500 Nm

Sizes 01 to 4 Type 490.___.1 Flange clutch for very wide drive elements or elements with a very small diameter


Suitable bearings for the drive element are ball bearings, needle bearings or plain bearings.

See installation example, Fig. 2, page 54

With cone bushing Type 490._1_.1 With keyway Type 490._2_.1

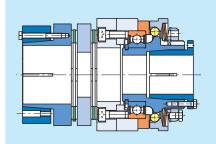
Page 12

EAS®-compact® with steel bellows coupling

Torque: 5 to 350 Nm

Sizes 01 to 3 Type 493._ _ _.0

- Double shaft design with a torsionally rigid steel bellows
- Compensation for axial, radial and angular shaft misalignments. See installation example, Fig. 4, page 54


Hub designs:

EAS®-side/steel bellows-side Cone bushing/cone bushing Key hub/key hub Cone bushing/clamping hub

Type 493._1_.0 Type 493._2_.0 Type 493._3_.0

Page 14

EAS®-compact® torsionally rigid

Torque: 5 to 1500 Nm

Sizes 01 to 4 Type 496._ _ _.0

- Double shaft design with a robust disk pack coupling
- Compensation for axial, radial and angular shaft misalignments
- High torsional rigidity

Hub designs:

EAS®-side/torsionally rigid side Cone bushing/shrink disk hub Key hub/clamping hub Key hub/key hub

Type 496._1_.0 Type 496._2_.0 Type 496._2_.0

Page 16

Summary of constructional designs EAS®-compact® ratchetting clutch/synchronous clutch

Torque: 5 to 1200 Nm

Sizes 01 to 4 Type 494._ _ _._

- Double shaft design with a flexible, backlash-free coupling
- Compensation for axial, radial and angular shaft misalignments
- High damping characteristics

See installation example, Fig. 3, page 54

Hub designs:

EAS®-side/flexible side
Cone bushing/clamping hub
Cone bushing/shrink disk hub
Key hub/key hub

Type 494._0_._ Type 494._1_._ Type 494._2_._

Page 18

Summary of constructional designs EAS®-NC miniature clutch

Torque: 0.65 to 15 Nm

Sizes 03 and 02 Type 450.__._

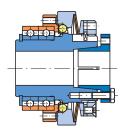
EAS®-NC short hub

 Flange clutch for direct installation of drive elements with the resulting radial force approximately in the bearing centre

With cone bushing Type 450._1_.0
With keyway Type 450._2_.0

EAS®-NC long protruding hub

• Flange clutch for very wide drive elements or elements with


a very small diameter
With cone bushing

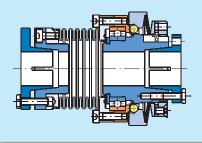
With keyway

Type 450._1_.1
Type 450._2_.1

Page 20

EAS®-NC double bearing design

Torque: 0.65 to 15 Nm


Sizes 03 and 02 Type 450._ _ _.2 Flange clutch with a stable, double bearing for the drive element

With cone bushing With keyway

Type 450._1_.2 Type 450._2_.2

Page 22

EAS®-NC with steel bellows coupling

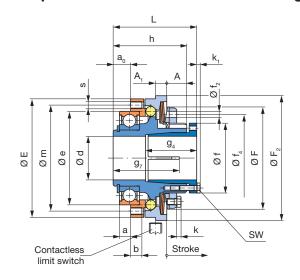
Torque: 0.65 to 15 Nm

Sizes 03 and 02 Type 453._ _ _.0

- Double shaft design with a torsionally rigid steel bellows coupling
- Compensation for axial, radial and angular shaft misalignments

Hub designs:

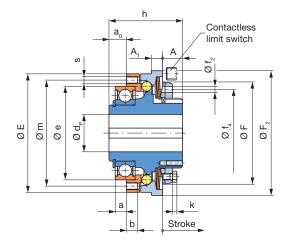
EAS®-side/steel bellows-side Cone bushing/cone bushing Key hub/key hub


Type 453._1_.0 Type 453._2_.0

Page 24

EAS®-compact® short hub with cone bushing

Type 490._1_.0 Sizes 01 to 4



For information on rustproof designs, please order catalogue!

EAS®-compact® short hub with keyway

Type 490._2_.0 Sizes 01 to 4

For information on rustproof designs, please order catalogue!

Order	Numbe	er														
				ne bush vith keyv	_	1 2	0 5		_	utch ³⁾ clutch		Torque (Option	•	tment value	•	
/	4	9	0		_			0	/		/		/		/ _	
				_												
Sizes 01 to 4	Torque r medium high very high maximur	1			5 6 7 8					Hub bore Ø d ^{H7} Ø d _P ^{H7}			pag	With mit switch see ges 51 – 53 (option)	Radial to adjustm see page (Option	nent e 42

Example: Order number 1 / 490.620.0 / 25 / 60 / limit switch 055.002.5 / radial adjustment

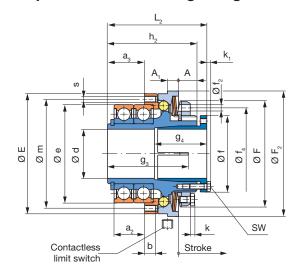
- 1) See Technical Data, limit torque for overload $\rm M_{\rm G}$
- 2) Max. torque range only available as synchronous clutch, speed < 250 rpm
- 3) Standard ratchetting division is 15°; other ratchetting divisions optionally available (45°/60°/90°/120°/180°/...)

Technical data				Size 1)								
recrimical data				01	0	1	2	3	4			
	Type 490.50	M _G	[Nm]	5 – 12.5	10 - 25	20 - 50	40 – 100	70 – 175	120 - 300			
Limit torques for Type 490.60	M _G	[Nm]	10 – 25	20 - 50	40 – 100	80 – 200	140 – 350	240 - 600				
overload 1) 2)	Type 490.70	M _G	[Nm]	20 – 50	40 – 100	80 – 200	160 – 400	280 – 700	480 –1200			
	Type 490.8_ 5.0 11)	M _G	[Nm]	25 – 62.5	50 – 125	100 – 250	200 – 500	350 – 875	600 –1500			
Max. speed		n _{max}	[rpm]	4000	3000	2500	2000	1200	800			
Thrust washer stroke	e on overload		[mm]	1.2	1.5	1.8	2.0	2.2	2.5			

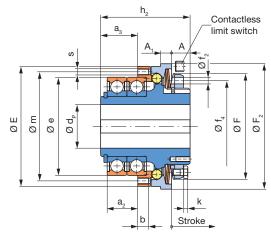
Mass mamonts o	f inartia and w	,oio	uhto	Size							
wass moments o	Mass moments of inertia and weights					1	2	3	4		
Hub-side	Type 49010	1	[10 ⁻³ kgm ²]	0.211	0.531	1.388	2.846	6.858	29.432		
nub-side	Type 49020	1	[10 ⁻³ kgm ²]	0.205	0.505	1.302	2.630	6.329	28.443		
Pressure flange-side	Type 49010	1	[10 ⁻³ kgm ²]	0.093	0.234	0.643	1.306	2.649	6.690		
Pressure nange-side	Type 49020	1	[10 ⁻³ kgm ²]	0.093	0.234	0.643	1.306	2.649	6.690		
Waighta	Type 49010	m	[kg]	0.68	1.14	1.98	2.88	4.59	10.63		
Weights	Type 49020		[kg]	0.63	1.02	1.75	2.55	4.07	10.06		

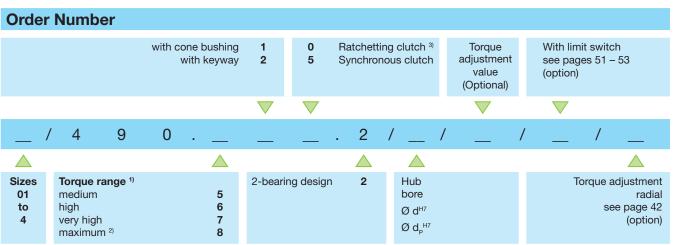
Tonoioning corou	Tensioning screws and screw-on bores					Size							
rensioning screws and screw-on bores				01	0	1	2	3	4				
	Number, dimensions	M	[mm]	6 x M4	6 x M4	8 x M4	8 x M5	8 x M6	8 x M8				
Tensioning screws in cone bushing	Wrench opening	SW	[mm]	7	7	7	8	10	13				
in conc buoming	Tightening torque	T _A	[Nm]	4	4	4	8	12	25				
Screw-on bores	Number, dimensions	s	[mm]	8 x M4	8 x M5	8 x M6	8 x M6	8 x M8	8 x M10				
in pressure flange (12)		,				Screws quality class 12.9 must be used to secure the drive element.							

Dimensional	mm1			Si	ze		
Dimensions [01	0	1	2	3	4
Α		12	13.5	16	17	20.5	46
A ₁		7	8	9	10	12	16
a ⁵⁾		5	7	9	10	10	12
a _o		8	11	14	16	18	21
b		6	7	9	10	12	15
E		65	80	95	110	130	166
e _{h5} ⁶⁾		47	62	75	90	100	130
F		61.5	67	82	97	117	150
F ₂		70	85	100	115	135	166
f		38	44	56	70	84	100
f ₂		5	5	5	6	7	-
f ₄		50	55	70	84	100	-
Minimum	9 ₄	34	39	42	48	53	93
shaft length	9 ₇	31	36	48	49	62	78
h		40	48	59	64	75	115
k		2.8	2.8	3.5	4.0	4.0	-
k ₁		2.8	2.8	2.8	3.5	4.0	5.3
L ⁷⁾	L ⁷⁾		56	67	73	86	130
m		56	71	85	100	116	150


Bores [mm]		Size										
Dores [iiii	nij	01	0	1	2	3	4					
d ^{2) 3) 4)}	d _{min}	10	15	22	32	35	40					
u ¬¬¬	d _{max}	20	25	35	45	55	65					
al 2) 10)	d _{P min} 8)	12	15	22	28	32	40					
d _P ^{2) 10)}	d _{P max} 9)	20	25	30	40	50	65					

- 1) Further sizes for smaller and larger torques available on request
- 2) Please observe the shaft load in max. torque range.
- 3) Shaft tolerance up to Ø 38 h8, over Ø 38 h8
 4) Transmittable torques available with smaller bores on request
- 5) Mounting tolerance + 0.1
- 6) Tolerance user-side H7
- 7) Dimensions in untensioned condition (shorter in tensioned condition)
- 8) Smaller bores for low torques available on request
- 9) Larger bores available on request
- 10) The position of the keyway to the mounting bore "s" in the pressure flange is not defined. Defined position available on request
- 11) Maximum speed: 250 rpm
- 12) The screw-on bores in the pressure flange are not angle-synchronous to the hub keyway in the standard version.


EAS®-compact® double bearing design with cone bushing


Type 490. 1 .2 Sizes 01 to 4

EAS®-compact® double bearing design with keyway

Type 490._2_.2 Sizes 01 to 4

Example: Order number 1 / 490.610.2 / 25 / 60 / limit switch 055.002.5 / radial adjustment

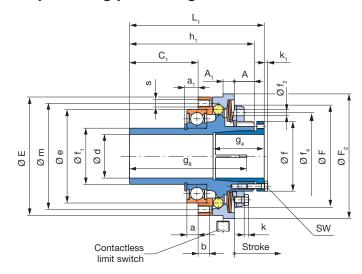
- 1) See Technical Data, limit torque for overload $\rm M_{\rm g}$ 2) Max. torque range only available as synchronous clutch, speed < 250 rpm
- 3) Standard ratchetting division is 15°; other ratchetting divisions optionally available (45°/60°/90°/120°/180°/...)

Technical data				Size 1)								
rechnical data	Technical data					1	2	3	4			
	Type 490.52	M _G	[Nm]	5 – 12.5	10 - 25	20 - 50	40 – 100	70 – 175	120 - 300			
Limit torques for Type 490.62	M _G	[Nm]	10 – 25	20 - 50	40 – 100	80 – 200	140 – 350	240 - 600				
overload 1) 2)	Type 490.72	M _G	[Nm]	20 – 50	40 – 100	80 – 200	160 – 400	280 – 700	480 –1200			
	Type 490.8_ 5.2 11)	M _G	[Nm]	25 – 62.5	50 – 125	100 – 250	200 – 500	350 – 875	600 –1500			
Max. speed		n _{max}	[rpm]	4000	3000	2500	2000	1200	800			
Thrust washer stroke	e on overload		[mm]	1.2	1.5	1.8	2.0	2.2	2.5			

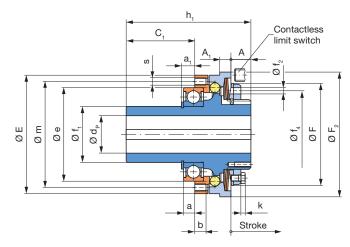
Mass mamonts o	Mass moments of inertia and weights					Size							
wass moments o	i inertia and v	veig	Jiils	01	0	1	2	3	4				
Hub-side	Type 49012 I [10 ⁻³ kgm ²]			0.215	0.552	1.450	2.998	7.081	30.990				
Hub-side	Type 49022	1	[10 ⁻³ kgm ²]	0.209	0.526	1.364	2.782	6.552	30.000				
Pressure flange-side	Type 49012	1	[10 ⁻³ kgm ²]	0.100	0.273	0.799	1.675	3.162	8.570				
Pressure nange-side	Type 49022	1	[10 ⁻³ kgm ²]	0.100	0.273	0.799	1.675	3.162	8.570				
Weights	Type 49012		[kg]	0.79	1.35	2.35	3.45	5.27	11.96				
weights	Type 49022	m	[kg]	0.74	1.23	2.12	3.12	4.75	11.35				

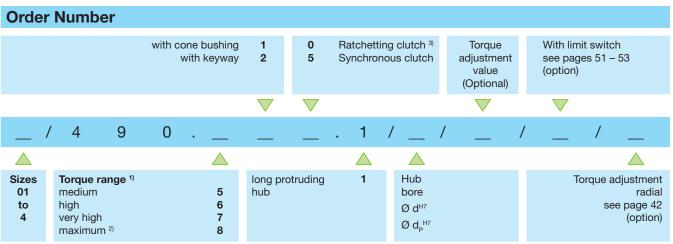
Tanaianing careu	ro and aarow an b	20 KO	•			Si	ze		
Tensioning screw	s and screw-on i	Jore	5	01	0	1	2	3	4
	Number, dimensions	M	[mm]	6 x M4	6 x M4	8 x M4	8 x M5	8 x M6	8 x M8
Tensioning screws in cone bushing	Wrench opening	sw	[mm]	7	7	7	8	10	13
conc buog	Tightening torque	T _A	[Nm]	4	4	4	8	12	25
Screw-on bores	Number, dimensions	s	[mm]	8 x M4	8 x M5	8 x M6	8 x M6	8 x M8	8 x M10
in pressure flange (12)				Sci	rews quality cla	ss 12.9 must be	used to secure	the drive eleme	ent.

Dimensions I				Si	ze		
Dimensions [mmj	01	0	1	2	3	4
Α		12	13.5	16	17	20.5	46
A ₁			8	9	10	12	16
a ₂ ⁵⁾		14	19	25	28	28	34
a ₃		17	23	30	34	36	43
b		6	7	9	10	12	15
E		65	80	95	110	130	166
e _{h5} ⁶⁾		47	62	75	90	100	130
F		61.5	67	82	97	117	150
F ₂		70	85	100	115	135	166
f		38	44	56	70	84	100
f_2		5	5	5	6	7	-
f ₄		50	55	70	84	100	-
Minimum	g ₃	40	48	63	67	80	100
shaft length	9 ₄	34	39	42	48	53	93
$\mathbf{h}_{_{2}}$		49	60	75	82	93	137
k		2.8	2.8	3.5	4.0	4.0	-
k ₁	k ₁		2.8	2.8	3.5	4.0	5.3
L ₂ 7)	L ₂ 7)		68	83	91	104	152
m		56	71	85	100	116	150


Paras Imu	~1	Size								
Bores [mi	nj	01	0	1	2	3	4			
d ^{2) 3) 4)}	d _{min}	10	15	22	32	35	40			
u -7-7-7	d _{max}	20	25	35	45	55	65			
al 2) 10)	d _{P min} 8)	12	15	22	28	32	40			
d _P ^{2) 10)}	d _{P max} 9)	20	25	30	40	50	65			

- 1) Further sizes for smaller and larger torques available on request
- 2) Please observe the shaft load in max. torque range.
- 3) Shaft tolerance up to Ø 38 h8, over Ø 38 h8
 4) Transmittable torques available with smaller bores on request
- 5) Mounting tolerance + 0.1
- 6) Tolerance user-side H7
- 7) Dimensions in untensioned condition (shorter in tensioned condition)
- 8) Smaller bores for low torques available on request
- 9) Larger bores available on request
- 10) The position of the keyway to the mounting bore "s" in the pressure flange is not defined. Defined position available on request
- 11) Maximum speed: 250 rpm
- 12) The screw-on bores in the pressure flange are not angle-synchronous to the hub keyway in the standard version.


EAS®-compact®long protruding hub with cone bushing


Type 490._1_.1 Sizes 01 to 4

EAS®-compact® long protruding hub with keyway

Type 490._2_.1 Sizes 01 to 4

Example: Order number 1 / 490.610.1 / 25 / 60 / limit switch 055.002.5 / radial adjustment

- 1) See Technical Data, limit torque for overload M_G
- 2) Max. torque range only available as synchronous clutch, speed < 250 rpm
- 3) Standard ratchetting division is 15°; other ratchetting divisions optionally available (45°/60°/90°/120°/180°/...)

Technical data				Size 1)							
recrimical data				01	0	1	2	3	4		
Type 490.51		M _G	[Nm]	5 – 12.5	10 - 25	20 - 50	40 – 100	70 – 175	120 - 300		
Grenzdrehmomente	Type 490.61	M _G	[Nm]	10 – 25	20 - 50	40 – 100	80 – 200	140 – 350	240 - 600		
für Überlast 1) 2)	Type 490.71	M _G	[Nm]	20 – 50	40 – 100	80 – 200	160 – 400	280 – 700	480 – 1200		
	Type 490.8_ 5.1 ¹¹⁾	M _G	[Nm]	25 – 62.5	50 – 125	100 – 250	200 – 500	350 – 875	600 – 1500		
Max. speed		n _{max}	[rpm]	4000	3000	2500	2000	1200	800		
Thrust washer stroke	on overload		[mm]	1.2 1.5 1.8 2.0 2.2				2.5			

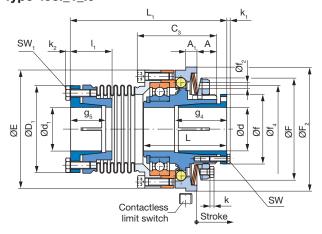
Mass mamonts o	f inartia and v	wai	abto			Si	ze		
Mass moments of	i inertia and v	vei	gnis	01	0	1	2	3	4
Hub-side	Type 49011		[10 ⁻³ kgm ²]	0.225	0.588	1.491	3.105	7.350	30.890
Hub-side	Type 49021	1	[10 ⁻³ kgm ²]	0.219	0.562	1.405	2.889	6.851	29.900
Dungayung flamma aida	Type 49011	1	[10 ⁻³ kgm ²]	0.093	0.234	0.643	1.306	2.649	6.690
Pressure flange-side	Type 49021	-1	[10 ⁻³ kgm ²]	0.093	0.234	0.643	1.306	6.851 2.649 2.649	6.690
Weights	Type 49011	m	[kg]	0.78	1.36	2.26	3.34	5.18	11.65
weights	Type 49021	m	[kg]	0.73	1.24	2.04	3.00	4.66	11.04

Tanaianing aarau	ro and severy on h		_	Size					
rensioning screw	s and screw-on b	ore	S	01	0	1	2	3	4
	Number, dimensions	М	[mm]	6 x M4	6 x M4	8 x M4	8 x M5	8 x M6	8 x M8
Tensioning screws in cone bushing	Wrench opening	sw	[mm]	7	7	7	8	10	13
in cone busining	Tightening torque	T _A	[Nm]	4	4	4	8	12	25
Screw-on bores	Number, dimensions	s	[mm]	8 x M4	8 x M5	8 x M6	8 x M6	8 x M8	8 x M10
in pressure flange (12)				Screws quality class 12.9 must be used to secure the drive of					ent.

Dimensions [mm1			Si	ze		
Dimensions		01	0	1	2	3	4
Α		12	13.5	16	17	20.5	46
A ₁		7	8	9	10	12	16
a ⁵⁾			7	9	10	10	12
a ₁		6.5	8.75	11.5	13	14	16
b		6	7	9	10	12	15
C ₁		33	43	55	67	73	76
E		65	80	95	110	130	166
e _{h5} ⁶⁾		47	62	75	90	100	130
F		61.5	67	82	97	117	150
F ₂		70	85	100	115	135	166
f		38	44	56	70	84	100
f _{1 h6}		30	40	45	55	65	85
f ₂		5	5	5	6	7	-
f ₄		50	55	70	84	100	-
Minimum	9 ₄	34	39	42	48	53	93
shaft length	g ₈	56	68	89	100	117	133
h ₁		65	80	100	115	130	170
k	k		2.8	3.5	4.0	4.0	-
k ₁		2.8	2.8	2.8	3.5	4.0	5.3
L ₁ 7)		72	88	108	124	141	185
m		56	71	85	100	116	150

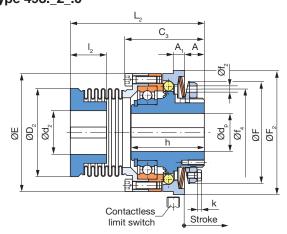
Paras Imr	1	Size								
Bores [mr	IIJ	01	0	1	2	3	4			
d ^{2) 3) 4)}	d _{min}	10	15	22	32	35	40			
u	d _{max}	20	25	35	45	55	65			
al 2) 10)	d _{P min} 8)	12	15	22	28	32	40			
d _P ^{2) 10)}	d _{P max} 9)	20	25	30	40	50	65			

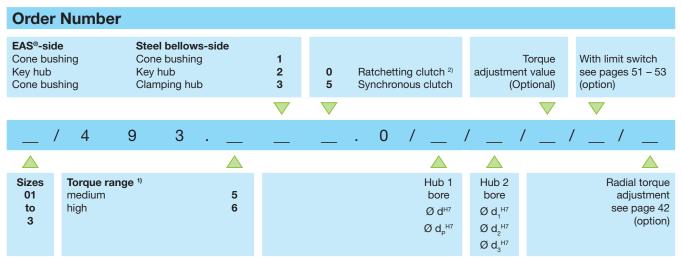
- 1) Further sizes for smaller and larger torques available on request


- Please observe the shaft load in max. torque range.
 Shaft tolerance up to Ø 38 hg, over Ø 38 hg
 Transmittable torques available with smaller bores on request
- 5) Mounting tolerance + 0.1
- 6) Tolerance user-side H7
- 7) Dimensions in untensioned condition (shorter in tensioned condition)
- 8) Smaller bores for low torques available on request
- 9) Larger bores available on request
- 10) The position of the keyway to the mounting bore "s" in the pressure flange is not defined. Defined position available on request
- 11) Maximum speed: 250 rpm
- 12) The screw-on bores in the pressure flange are not angle-synchronous to the hub keyway in the standard version.

EAS®-compact® with steel bellows coupling

Type 493._ _ _ .0 Sizes 01 to 3


EAS®-side cone bushing, Steel bellows-side cone bushing Type 493._1_.0



EAS®-side cone bushing, Steel bellows-side clamping hub Type 493._3_.0

EAS®-side key hub, Steel bellows-side key hub Type 493._2_.0

Example: Order number 1 / 493.615.0 / 22 / 25 / 60 / limit switch 055.002.5 / radial adjustment

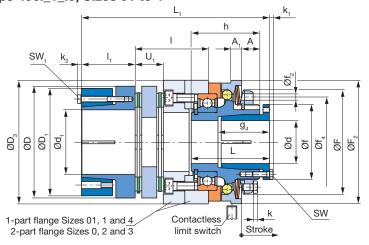
- 1) See Technical Data, limit torque for overload M_a
- 2) Standard ratchetting division is 15°; other ratchetting divisions optionally available (45°/60°/90°/120°/180°/...)

Technical data						Size 1)		
recrimical data				01	0	1	2	3
Limit torques for	Type 493.50	M _G	[Nm]	5 – 12.5	10 – 25	20 - 50	40 – 100	70 – 175
overload 1)	Type 493.60	M _G	[Nm]	10 – 25	20 – 50	40 – 100	80 – 200	140 – 350
Max. speed		n _{max}	[rpm]	4000	3000	2500	2000	1200
Thrust washer stroke	on overload		[mm]	1.2	1.5	1.8	2.0	2.2
Nominal torques, stee	l bellows coupling	T _{KN}	[Nm]	50	100	200	350	600
December of	axial	ΔK _a	[mm]	0.4	0.6	0.8	1.0	1.0
Permitted radial radial	radial	ΔK _r	[mm]	0.15	0.15	0.20	0.25	0.30
inidangimenta	angular	ΔK _w	[°]	2	2	2	2	2

Mass mamonts	of inartia and u	,oio	ıhto			Size		
Mass moments of	oi inertia and w	/eiç	Jiits	01	0	1	2	3
	Type 49310 I			0.211	0.531	1.388	2.846	6.858
EAS®-hub-side	Type 49320	1	[10 ⁻³ kgm ²]	0.205	0.505	1.302	2.630	6.359
	Type 49330	1	[10 ⁻³ kgm ²]	0.211	0.531	1.388	2.846	6.858
	Type 49310	1	[10 ⁻³ kgm ²]	0.269	0.753	1.764	3.602	7.789
Steel bellows-side	Type 49320	1	[10 ⁻³ kgm ²]	0.249	0.690	1.546	3.018	6.818
	Type 49330	1	[10 ⁻³ kgm ²]	0.286	0.789	1.772	3.773	8.087
	Type 49310	m	[kg]	1.09	1.88	3.08	4.60	7.19
Weights	Type 49320	m	[kg]	1.04	1.76	2.85	4.27	6.90
	Type 49330	m	[kg]	1.22	1.91	3.10	4.65	7.12

Tonoioning corou	vo					Size		
Tensioning screv	VS			01	0	1	2	3
to a constitue to the constitue of	Number, dimensions	М	[mm]	6 x M4	6 x M4	8 x M4	8 x M5	8 x M6
In cone bushing EAS®-side	Wrench opening	SW	[mm]	7	7	7	8	10
LAG -Side	Tightening torque	T _A	[Nm]	4	4	4	8	12
la saus brodina	Number, dimensions	M ₁	[mm]	4 x M4	6 xM5	6 x M6	6 x M8	6 x M8
In cone bushing steel bellows-side	Wrench opening	SW ₁	[mm]	7	8	10	13	13
Steel bellows-side	Tightening torque	T _A	[Nm]	3	5	9.5	17	17
la alamaina bub	Number, dimensions	M_3	[mm]	1 x M5	1 x M6	1 x M6	1 x M8	1 x M10
In clamping hub steel bellows-side	Wrench opening	SW ₃	[mm]	4	5	5	6	8
Steel bellows-side	Tightening torque	T _A	[Nm]	10	18	18	43	87

Dimension	o [mm]			Size		
Dimension	s [mm]	01	0	1	2	3
Α		12	13.5	16	17	20.5
A ₁		7	8	9	10	12
C ₃		45	53	64	70	81
D ₁		47	60	70	81	98
$D_{\!\scriptscriptstyle 2}$		47	60	71	81	98
D_3		50	60	71	82	98
Е		65	80	95	110	130
F		61.5	67	82	97	117
F ₂		70	85	100	115	135
f		38	44	56	70	84
f ₂		5	5	5	6	7
f ₄		50	55	70	84	100
Minimum	$g_{_4}$	34	39	42	48	53
shaft length	g ₅	24	27	29	32	35
onare longer	l ₃	24	28	28	36	40
h		40	48	59	64	75
k		2.8	2.8	3.5	4.0	4.0
k ₁		2.8	2.8	2.8	3.5	4.0
L 4)		47	56	67	73	86
L ₁ 4)		93	109	125.5	138	164
L ₂		77.5	92	107.5	119	140.5
L ₃ 4)		102	119	133	150	177
I ₁ 4)		27.5	29	33	37	45
l ₂		25	27	29	36	44

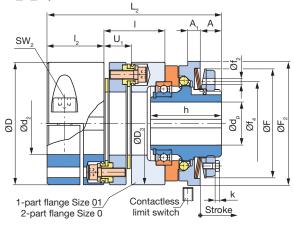

Doro	o Imn	. 1			Size		
Dore	s [mn	IJ	01	0	1	2	3
de	d ^{2) 3)}	d _{min}	10	15	22	32	35
EAS®-side	u -, -,	d _{max}	20	25	35	45	55
လို့	d	d _{P min}	12	15	22	28	32
7	d _P	d _{P max}	20	25	30	40	50
4	d ₁ ^{2) 3)}	d _{1 min}	9	12	15	22	32
š	u ₁	d _{1 max}	20	25	35	42	50
bellc	d	d _{2 min}	9	12	15	22	32
sic	d ₂	d _{2 max}	20 5)	25 ⁶⁾	35 ⁷⁾	42 8)	50
Steel bellows side	d	d _{3 min}	12	15	25	30	35
Ó	d ₃	d _{3 max}	25	32	42	45	55

- 1) Further sizes for smaller and larger torques available on request

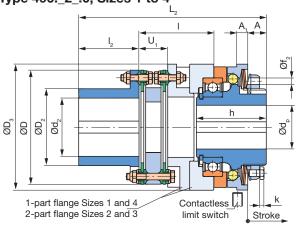
- Further sizes for smaller and larger torques available on request
 Shaft tolerance up to Ø 38 hg, over Ø 38 hg
 Transmittable torques available with smaller bores on request
 Dimensions in untensioned condition (shorter in tensioned condition)
 Up to Ø 18 keyway acc. DIN 6885/1, over Ø 18 keyway acc. DIN 6885/3
 Up to Ø 22 keyway acc. DIN 6885/1, over Ø 22 keyway acc. DIN 6885/3
 Up to Ø 33 keyway acc. DIN 6885/1, over Ø 33 keyway acc. DIN 6885/3
 Up to Ø 38 keyway acc. DIN 6885/1, over Ø 38 keyway acc. DIN 6885/3

EAS®-compact® torsionally rigid

EAS®-side cone bushing, ROBA®-DS-side shrink disk hub Type 496._1_.0, Sizes 01 to 4 Type 496.___.0 Sizes 01 to 4



All EAS®-compact® clutches can be combined with almost all components of the ROBA®-DS backlash-free shaft coupling. The Types shown here represent only a selection of the most established designs.


For further combination possibilities, see page 43.

We are happy to advise you on the dimensioning and configuration of your optimum clutch.

EAS®-side key hub, ROBA®-DS-side clamping hub with keyway Type 496._2_.0, Sizes 01 and 0

EAS®-side key hub, ROBA®-DS-side key hub Type 496._2_.0, Sizes 1 to 4

The missing dimensions ($Of_A OF$ and OF_A) are identical to Type 496._2_.0

Order Number

EAS®-side Cone bushing Key hub ROBA®-DS-side Shrink disk hub Clamping hub ⁴⁾ with keyway (Sizes 01 – 0) / key hub (Sizes 1 – 4)

Ratchetting clutch ³⁾
Synchronous clutch

Torque adjustment value (Optional) With limit switch see pages 51 – 53 (option)

4 9 6 Sizes Torque range 1) Hub 1 Hub 2 Radial torque 01 medium 5 adjustment bore bore 6 see page 42 to high $Ø d^{H7}$ $Ø d_1^{H7}$ 7 very high (option) 4 Ø d_DH7 Ø d₂H7 maximum 2) 8

Example: Order number 1 / 496.625.0 / 22 / 25 / 60 / limit switch 055.002.5 / radial adjustment

1

2

- 1) See Technical Data, limit torque for overload $\rm M_{_{\rm G}}$
- Max. torque range only available as synchronous clutch, speed < 250 rpm
- Standard ratchetting division is 15°; other ratchetting divisions optionally available (45°/60°/90°/120°/180°/...)
- 4) Clamping hub also available without keyway (Sizes 01-0)

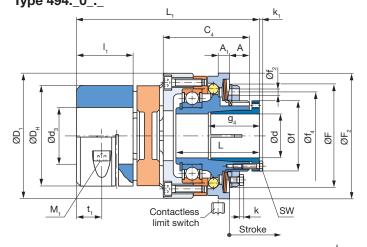
Technical data						Size 1)			
recrimical data				01	0	1	2	3	4
	Type 496.50	M _G	[Nm]	5 – 12.5	10 – 25	20 - 50	40 – 100	70 – 175	120 - 300
Limit torques for	Type 496.60	M _G	[Nm]	10 – 25	20 - 50	40 – 100	80 – 200	140 – 350	240 - 600
overload 1)	Type 496.70	M _G	[Nm]	20 – 50	40 – 100	80 – 200	160 – 400	280 – 700	480 – 1200
	Type 496.8_ 5.0 ⁵⁾	M _G	[Nm]	25 – 62.5	50 – 125	100 – 250	200 – 500	350 – 875	600 – 1500
Max. speed		n _{max}	[rpm]	4000	3000	2500	2000	1200	800
Thrust washer stroke	on overload		[mm]	1.2	1.5	1.8	2.0	2.2	2.5
Nominal torques, torsion	onally rigid coupling	T _{KN}	[Nm]	100	150	300	650	1100	1600
axial ⁶⁾		ΔK _a	[mm]	0.9	1.1	0.8	1.1	1.3	1.5
Permitted misalignments	radial	ΔK_r	[mm]	0.20	0.20	0.20	0.25	0.30	0.30
msangriments	angular	ΔK _w	[°]	2.0	2.0	1.4	1.4	1.4	1.4

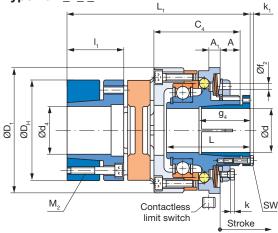
Mass mamonto	Mass moments of inertia and weights			Size						
wass moments c	wass moments of mertia and weights			01	0	1	2	3	4	
EAS®-hub-side	Type 49610	1	[10 ⁻³ kgm ²]	0.211	0.531	1.388	2.846	6.858	29.432	
EA3*-Hub-side	Type 49620	1	[10 ⁻³ kgm ²]	0.205	0.505	1.302	2.630	6.359	28.443	
ROBA®-DS-side	Type 49610	1	[10 ⁻³ kgm ²]	0.849	2.395	2.915	9.543	21.443	38.996	
HODA*-D5-Side	Type 49620	1	[10 ⁻³ kgm ²]	0.709	2.086	2.417	7.815	18.215	31.480	
Weights	Type 49610	m	[kg]	1.63	2.95	3.80	7.04	11.45	19.16	
weights	Type 49620	m	[kg]	1.43	2.61	3.50	6.35	10.81	17.31	

Topoloping corou					Si	ze		
Tensioning screv	VS		01	0	1	2	3	4
la seus bushina	Number, dimensions	M [mn	1 6 x M4	6 x M4	8 x M4	8 x M5	8 x M6	8 x M8
In cone bushing EAS®-side	Wrench opening	SW [mn	7	7	7	8	10	13
LAO -SIGC	Tightening torque		4	4	4	8	12	25
to all the area.	Number, dimensions	M₁ [mn	4 x M5	6 x M5	6 x M5	6 x M5	6 x M6	6 x M8
In shrink disk ROBA®-DS-side	Wrench opening	SW ₁ [mn	8	8	8	8	10	13
NODA -DO-Side	Tightening torque	T _A [Nn] 6	6	6	8.5	10	25
la alamaina bub	Number, dimensions M ₂ [mm]		1 x M8	1 x M8	-	-	-	-
ROBA®-DS-side	r clamping hub Wrench opening	SW ₂ [mn] 6	6	-	-	-	-
NODA -D3-Side	Tightening torque	T _A [Nn	33	33	-	-	-	-

Dimensions [mm]			Si	ze		
Dimensions [mm]	01	0	1	2	3	4
Α	12	13.5	16	17	20.5	46
$\mathbf{A}_{_{1}}$	7	8	9	10	12	16
D	69	79	77	104	123	143
D ₁	68	78	77	100	115	143
$D_{\!\scriptscriptstyle 2}$	-	-	50	70	80	100
D_3	69	85	100	115	135	172
F	61.5	67	82	97	117	150
F ₂	70	85	100	115	135	166
f	38	44	56	70	84	100
f ₂	5	5	5	6	7	-
f ₄	50	55	70	84	100	-
min. Wellenlänge g ₄	34	39	42	48	53	93
h	40	48	59	64	75	115
k	2.8	2.8	3.5	4.0	4.0	-
k ₁	2.8	2.8	2.8	3.5	4.0	5.3
$\mathbf{k_{2}}$	3.5	3.5	3.5	3.5	4.0	5.3
L ⁴⁾	47	56	67	73	86	130
L ₁ 4)	105.3	132.8	141.2	175.2	208	237
$L_{\!\scriptscriptstyle 2}$	98.3	120.3	133.2	171.2	207	237
I	34.3	49.8	48.2	68.2	85	68
I _t	32	37.5	40	50	55	60
	32	33.5	40	55	65	75
U ₁	15.3	15.8	21.2	26.2	34	35.2

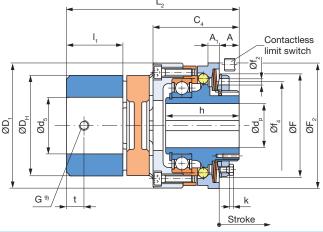
Воис	o Cuon	1			Si	ze		
Dore	s [mr	rij	01	0	1	2	3	4
	d ²⁾	$d_{\scriptscriptstylemin}$	10	15	22	32	35	40
EAS®-	u ′	d _{max}	20	25	35	45	55	65
Sic	٨	d _{P min}	12	15	22	28	32	40
	d _P	d _{P max}	20	25	30	40	50	65
် လ	d ₁ 3)	d _{1 min}	19	25	25	40	45	55
3A®-D side	u ₁ "	d _{1 max}	38	45	45	60	70	90
ROBA®-DS side	4	d _{2 min}	19	25	16	25	30	35
8	d ₂	d _{2 max}	35	42	32	50	55	70


- Further sizes for smaller and larger torques available on request
 Shaft tolerance up to Ø 38 hg², over Ø 38 hg
 Recommended shaft tolerance gg
 Dimensions in untensioned condition (shorter in tensioned condition)
 Maximum speed: 250 rpm
 Only permitted as a static or virtually static value.


EAS®-compact® lastic backlash-free

Type 494. . Sizes 01 to 4

EAS®-side cone bushing, ROBA®-ES-side clamping hub Type 494._0_._



EAS®-side cone bushing. ROBA®-ES-side shrink disk hub Type 494._1_._

The missing dimensions (Øf, Øf, QF and ØF,) are identical to Type 494._0_._

EAS®-side key hub, ROBA®-ES-side key hub Type 494. 2.

Order Number

EAS®-side ROBA®-ES-side Cone bushing Clamping hub 0 Cone bushing Shrink disk hub 0 Ratchetting clutch 2) Key hub Key hub 2 5 Synchronous clutch

64 Shore D

Torque adjustment value (Optional) With limit switch see pages 51 - 53 (Option)

(option)

4 9 4 Sizes Hub 1 Hub 2 Torque range 1) Flexible coupling Radial torque adjustment 01 medium 5 92 Shore A 3 bore bore 98 Shore A to high 6 4 see page 42 $Ø d^{H7}$ Ø d₃F7

Example: Order number 1 / 494.615.3 / 22 / 25 / 60 / limit switch 055.002.5 / radial adjustment

very high

- See Technical Data, limit torque for overload $\rm M_{\rm g}$ Standard ratchetting division is 15°; other ratchetting divisions optionally available (45°/60°/90°/120°/180°/...)
- The transmittable torques on the flexible coupling " $T_{\rm KN}$ " are dependent on factors such as Temperature factor, torsional rigidity, etc., see also coupling dimensioning ROBA®-ES catalogue K.940.V_ or contact the manu-facturer. Furthermore, the transmittable torques of the flexible coupling are dependent on the bore diameter d₃ or d₄, see also Table 1
- on page 50.

6

Shaft tolerance up to Ø 38 $_{\rm h6}$, over Ø 38

 $Ø d_{D}^{H7}$

Transmittable torques available with smaller bores on request

 $Ød_{4}^{H7}$ Ø d_E H7

- Smaller bores for smaller torques available on request
- Larger bores available on request
- Shaft tolerance up to Ø 40 j6
- Keyway 180° offset to "G"
- 10) Dimensions in untensioned condition (shorter in tensioned condition)

Tookning I date							Size			
Technical data					01	0	1	2	3	4
Limit townson for	Type 49	4.5	$M_{_{\mathrm{G}}}$	[Nm]	5 – 12.5	10 – 25	20 - 50	40 – 100	70 – 175	120 - 300
Limit torques for overload 3)	Type 494.6		M_{g}	[Nm]	10 – 25	20 – 50	40 – 100	80 – 200	140 – 350	240 - 600
Overioau -	Type 49	4.7	M _G	[Nm]	20 – 50	40 – 100	80 – 200	160 – 400	280 – 700	480 – 1200
Max. speed			n _{max}	[rpm]	4000	3000	2500	2000	1200	800
Thrust washer stroke on overload			[mm]	1.2	1.5	1.8	2.0	2.2	2.5	
Nominal and maxi- 92 Shore A		92 Shore A	T _{KN} /T _{max}	[Nm]	35 / 70	95 / 190	190 / 380	265 / 530	310 / 620	900 / 1800
mum torques 3),	98 Shore A		T _{KN} /T _{max}	[Nm]	60 / 120	160 / 320	325 / 650	450 / 900	525 / 1050	1040 / 2080
flexible coupling		64 Shore D	T _{KN} /T _{max}	[Nm]	75 / 150	200 / 400	405 / 810	560 / 1120	655 / 1310	1250 / 2500
	axial		ΔK_{a}	[mm]	1.4	1.5	1.8	2.0	2.1	2.6
		92 Shore A	ΔK_r	[mm]	0.14	0.15	0.17	0.19	0.21	0.25
Permitted	radial	98 Shore A	ΔK_r	[mm]	0.10	0.11	0.12	0.14	0.16	0.18
	64 Sh		ΔK_{r}	[mm]	0.07	0.08	0.09	0.10	0.11	0.13
misalignments		92 Shore A	ΔK_{w}	[°]	1.0	1.0	1.0	1.0	1.0	1.0
	angular	98 Shore A	ΔK_{w}	[°]	0.9	0.9	0.9	0.9	0.9	0.9
		64 Shore D	$\Delta K_{_{w}}$	[°]	0.8	0.8	0.8	0.8	0.8	0.8

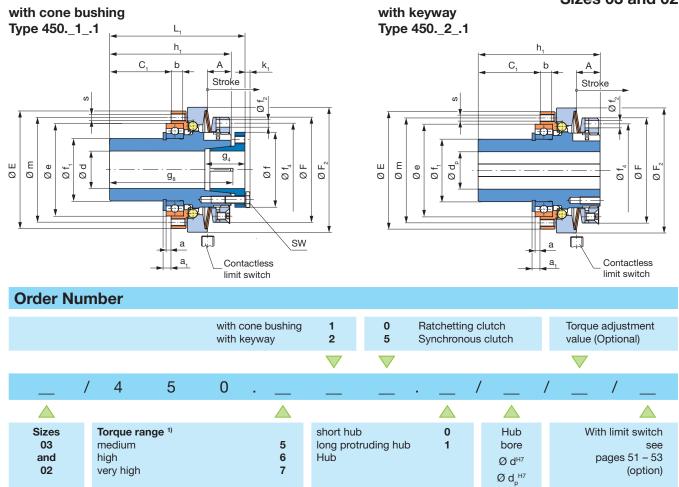
Mass mamonts	of inartia and u	,oic	ubto			Si	ze		
Mass moments	oi inertia and v	veić	Jiits	01	0	1	2	3	4
	Type 4940 I [10 ⁻³		[10 ⁻³ kgm ²]	0.211	0.531	1.388	2.846	6.858	29.432
EAS®-hub-side	Type 4941	-1	[10 ⁻³ kgm ²]	0.211	0.531	1.388	2.846	6.858	29.432
	Type 4942	-1	[10 ⁻³ kgm ²]	0.205	0.505	1.302	2.630	6.359	28.443
	Type 4940	- 1	[10 ⁻³ kgm ²]	0.322	0.700	1.846	7.627	14.530	48.570
ROBA®-ES-side	Type 4941	-1	[10 ⁻³ kgm ²]	0.381	0.833	2.280	7.475	14.167	43.038
	Type 4942	- 1	[10 ⁻³ kgm ²]	0.324	0.696	1.847	7.613	14.520	49.106
	Type 4940	m	[kg]	1.06	1.58	2.69	6.31	9.23	21.53
Weights	Type 4941	m	[kg]	1.18	1.74	3.05	6.20	8.91	21.44
	Type 4942	m	[kg]	1.02	2.09	2.70	6.23	9.56	21.09

Tensioning screv	WO.		Size						
rensioning screv	V5		01	0	1	2	3	4	
la cono buobina	Number, dimensions	M [mm]	6 x M4	6 x M4	8 x M4	8 x M5	8 x M6	8 x M8	
In cone bushing EAS®-side	Wrench opening	SW [mm]	7	7	7	8	10	13	
EAS -Side	Tightening torque	T _A [Nm]	4	4	4	8	12	25	
la alamaina hub	Number, dimensions	M ₁ [mm]	1 x M6	1 x M8	1 x M8	1 x M10	1 x M12	1 x M14	
In clamping hub	Wrench opening	SW ₁ [mm]	5	6	6	8	10	12	
NODA -LO-Side	Tightening torque	T _A [Nm]	10.5	25	25	70	120	200	
In shrink disk	Number, dimensions	M ₂ [mm]	4 x M5	8 x M5	8 x M6	4 x M8	4 x M8	4 x M12	
ROBA®-ES-side	Wrench opening	SW ₂ [mm]	4	4	5	6	6	10	
NODA -L3-Side	Tightening torque	T _A [Nm]	6	6	10.5	25	30	90	

Dimensions [mm]			Si	ze		
Dimensions [mm]	01	0	1	2	3	4
Α	12	13.5	16	17	20.5	46
$\mathbf{A}_{_{1}}$	7	8	9	10	12	16
C ₄	47	56.5	69	74	87	130
D,	70	85	100	115	135	175
D _H	55	65	80	95	105	135
F	61.5	67	82	97	117	150
$F_{\!\scriptscriptstyle 2}$	70	85	100	115	135	166
f	38	44	56	70	84	100
f ₂	5	5	5	6	7	-
f ₄ G ⁹⁾	50	55	70	84	100	-
	M5	M6	M8	M8	M8	M10
min. Wellenlänge g ₄	34	39	42	48	53	93
h	40	48	59	64	75	115
k	2.8	2.8	3.5	4.0	4.0	-
k ₁	2.8	2.8	2.8	3.5	4.0	5.3
L ¹⁰⁾	47	56	67	73	86	130
L ₁ ¹⁰⁾	102	119.5	146	159	182	255
L_2	95	111.5	138	150	171	240
I,	30	35	45	50	56	75
t	10	15	15	20	25	20
t,	12	13.5	20	20	21	27.5

Doro	o Iman	a]			Si	ze		
DOIE	s [mn	ii)	01	0	1	2	3	4
	d ^{4) 5)}	d 4) 5) d _{min}		15	22	32	35	40
EAS®-	u ,,,	d _{max}	20	25	35	45	55	65
Sic	d 6)7)	d _{P min}	12	15	22	28	32	40
	d _P ^{6) 7)}	d _{P max}	20	25	30	40	50	65
side	al 3)	d _{3 min}	15	19	20	28	35	45
<u>.i2</u>	d ₃ ³⁾	d _{3 max}	28	35	45	50	55	80
S	പ 3)	d _{4 min}	15	19	20	28	35 ⁸⁾	45
œ	d ₄ ³⁾	d _{4 max}	28	38	45	50	60 ⁸⁾	75
ROBA®-ES	d ₅ ³⁾	d _{5 min}	8	10	12	14	20	38
RC	u ₅ -,	d _{5 max}	28	38	45	55	60	80

EAS®-NC short hub


Sizes 03 and 02 with cone bushing with keyway Type 450._1_.0 Type 450._2_.0 Α Stroke Stroke S E Ø Ø e Ø ØF ØE e Ø ØΕ ØF ØF ğ Ø ğ SW а a_o Contactless Contactless 1 x countersunk 2 x set screws on Size 03 limit switch screw on Size 02 on Types 45_._ _ ._ limit switch

on Types 45_._ _ ._

EAS®-NC long protruding hub

Type 450._ _ _.1 Sizes 03 and 02

Type 450._ _ _.0

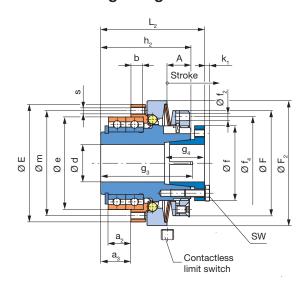
Example: Order number 02 / 450.610.0 / 15 / 8 / limit switch 055.002.5

Tooknieel dete				Siz	e ¹⁾
Technical data				03	02
	Type 450.5	M _G	[Nm]	0.65 - 1.30	2 - 5
Limit torques for overload 1)	Type 450.6	Type 450.6 M _G		1.30 – 2.60	5 – 10
Overload	Type 450.7	M _G	[Nm]	2.00 - 3.80	6 – 15
Max. speed		n _{max}	[rpm]	4000	4000
Thrust washer stroke on overload [mm]		0.8	1.0		

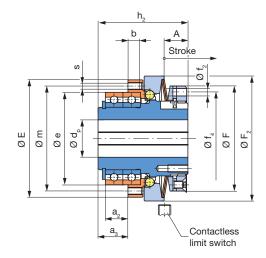
Mass moments of inertia and weights			ıbto	Size	
wass moments o	Mass moments of inertia and weights			03	02
	Type 45010	1	[10 ⁻³ kgm ²]	0.027	0.054
Hub-side	Type 45020	1	[10 ⁻³ kgm ²]	0.025	0.051
Tub-side T	Type 45011	1	[10 ⁻³ kgm ²]	0.028	0.058
	Type 45021	1	[10 ⁻³ kgm ²]	0.026	0.055
Pressure flange-side	Type 450	1	[10 ⁻³ kgm ²]	0.008	0.018
	Type 45010	m	[kg]	0.18	0.28
Weights	Type 45020	m	[kg]	0.17	0.26
	Type 45011	m	[kg]	0.20	0.32
	Type 45021	m	[kg]	0.19	0.30

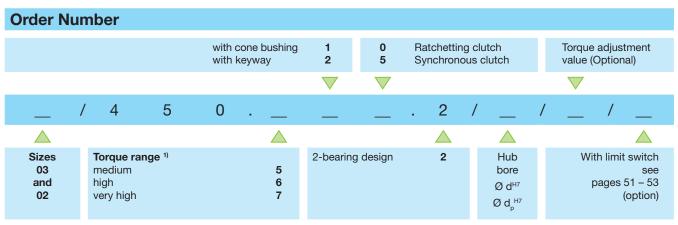
Tensioning screws and screw-on bores			_	Size		
			S	03	02	
Number, dimensions		M	[mm]	4 x M3	4 x M3	
Tensioning screws in cone bushing	Wrench opening	sw	[mm]	5.5	5.5	
in conc backing	Tightening torque	T _A	[Nm]	1	1	
Screw-on bores in pressure flange	Number, dimensions	s	[mm]	6 x M3	6 x M3	

Dimensions [mm]		Size			
Difficusions		03	02		
Α		7.2	9.5		
a ²⁾		2	2		
a _o		4.5	5.0		
a ₁		3.0	3.2		
b		5	5		
C ₁		20.5	25		
E		40	47		
e _{h5} 4)		30	37		
F		37	42		
F ₂		45	50		
f		26	30		
f _{1 h6}		17	25		
f ₂		-	3		
f ₄		-	37		
Minimum	g_4	11.5	15.5		
shaft length	9 ₇	25.5	30.5		
	g_8	41.5	50.5		
h		24	29		
h ₁		40	49		
k ₁		2	2		
L ⁶⁾		28.5	34.5		
L ₁ ⁶⁾		44.5	54.5		
m		35	42		


Bores [mm]		Size			
		03	02		
d	d _{min}	6	8		
u	d _{max}	12	15		
d _P 3)	d _{P min}	6	8		
	d _{P max}	11	16 ⁵⁾		

- 1) Further sizes for smaller and larger torques available on request
- Mounting tolerance + 0.1
 The position of the keyway to the mounting bore "s" in the pressure flange is not defined. Defined position available on request
- Tolerance user-side H7
- Up to Ø 14 keyway acc. DIN 6885/1, over Ø 14 keyway acc. DIN 6885/3
 Dimensions in untensioned condition (shorter in tensioned condition)


EAS®-NC double bearing design with cone bushing


Type 450._1_.2 Sizes 03 and 02

EAS®-NC double bearing design with keyway

Type 450._2_.2 Sizes 03 and 02

Example: Order number 02 / 450.610.2 / 15 / 8 / limit switch 055.002.5

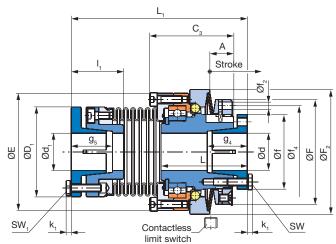
Technical data				Size 1)		
				03	02	
Type 450.52			[Nm]	0.65 – 1.30	2 – 5	
Limit torques for overload 1)	Type 450.62	M _G	[Nm]	1.30 – 2.60	5 – 10	
	Type 450.72	M _G	[Nm]	2.00 - 3.80	6 – 15	
Max. speed		n _{max}	[rpm]	4000	4000	
Thrust washer stroke on overload [mm]		0.8	1.0			

Mass moments of inertia and weights			ıhto	Size	
			Jiilo	03	02
Type 45012		1	[10 ⁻³ kgm ²]	0.028	0.058
Hub-side Typ	Type 45022	1	[10 ⁻³ kgm ²]	0.026	0.055
Pressure flange-side	Type 4502	1	[10 ⁻³ kgm ²]	0.008	0.018
Weights	Type 45012	m	[kg]	0.13	0.31
	Type 45022	m	[kg]	0.18	0.29

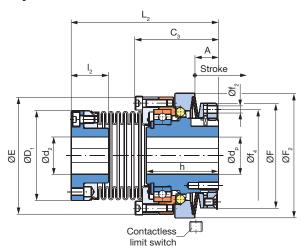
Tensioning screws and screw-on bores			_	Size		
			S	03	02	
Number, dimensio		M	[mm]	4 x M3	4 x M3	
Tensioning screws in cone bushing	Wrench opening	sw	[mm]	5.5	5.5	
	Tightening torque	T _A	[Nm]	1	1	
Screw-on bores in pressure flange	Number, dimensions	s	[mm]	6 x M3	6 x M3	

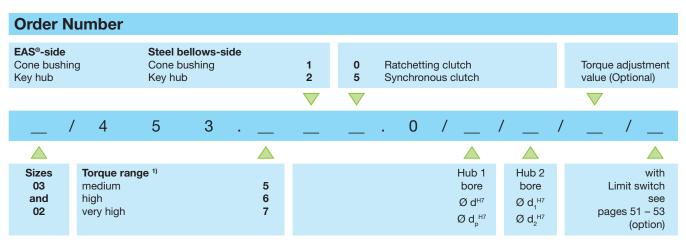
Dimensions [mm]		Si	ze
		03	02
Α		7.2	9.5
a ₂ 2)		9	9
a ₃		11.5	12
b		5	5
E		40	47
e _{h5} 4)		30	37
F		37	42
F ₂		45	50
f		26	30
$\mathbf{f_2}$		-	3
f ₄		-	37
Minimum	g ₃	32.5	37.5
shaft length	g ₄	11.5	15.5
h ₂		31	36
k ₁		2	2
L ₂ ⁶⁾		35.5	41.5
m		35	42

Bores [mm]		Size			
		03	02		
d	d _{min}	6	8		
u	d _{max}	12	15		
al 3)	d _{P min}	6	8		
d _P ³⁾	d _{P max}	11	16 ⁵⁾		


- 1) Further sizes for smaller and larger torques available on request
- Further sizes for smaller and larger torques available on request
 Mounting tolerance + 0.1
 The position of the keyway to the mounting bore "s" in the pressure flange is not defined. Defined position available on request
 Tolerance user-side H7
 Up to Ø 14 keyway acc. DIN 6885/1, over Ø 14 keyway acc. DIN 6885/3
 Dimensions in untensioned condition (shorter in tensioned condition)

EAS®-NC with steel bellows coupling


Type 453._ _ .0 Sizes 03 and 02


EAS®-side cone bushing, Steel bellows-side cone bushing Type 453._1_.0

EAS®-side key hub, Steel bellows-side key hub

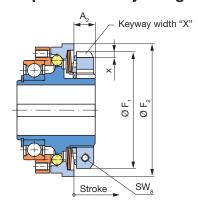
Type 453._2_.0

Example: Order number 02 / 453.615.0 / 15 / 15 / 8 / limit switch 055.002.5

Technical data				Size 1)	
recrimical data	recrimoar data			03	02
	Type 453.50	\mathbf{M}_{G}	[Nm]	0.65 - 1.30	2 - 5
Limit torques for overload 1)	Type 453.60	M _G	[Nm]	1.30 – 2.60	5 – 10
Type 453.70		$M_{\rm G}$	[Nm]	2.00 - 3.80	6 – 15
Max. speed		n _{max}	[rpm]	4000	4000
Thrust washer stroke	on overload		[mm]	0.8	1.0
Nominal torques, stee	l bellows coupling	T _{KN}	[Nm]	12	25
axial		ΔK_{a}	[mm]	0.2	0.3
Permitted misalignments	radial	ΔK_{r}	[mm]	0.1	0.1
	angular	$\Delta K_{_{w}}$	[°]	2	2

Mass moments of inertia and weights			ıbta	Size	
			JIIIS	03	02
Hub-side Type 45310 Type 45320		1	[10 ⁻³ kgm ²]	0.027	0.054
		1	[10 ⁻³ kgm ²]	0.025	0.051
Steel bellows-side	Type 45310	1	[10 ⁻³ kgm ²]	0.027	0.063
Steer bellows-side	Type 45320	1	[10 ⁻³ kgm ²]	0.025	0.057
Weights	Type 45310	m	[kg]	0.27	0.45
	Type 45320	m	[kg]	0.24	0.39

Tensioning screws				Size	
				03	02
	Number, dimensions	M	[mm]	4 x M3	4 x M3
In cone bushing EAS®-side	Wrench opening	SW	[mm]	5.5	5.5
LAO -Side	Tightening torque	T _A	[Nm]	1.3	1.3
In cone bushing steel bellows-side	Number, dimensions	M ₁	[mm]	4 x M3	4 x M3
	Wrench opening	SW,	[mm]	5.5	5.5
	Tightening torque	T _A	[Nm]	1.3	1.3

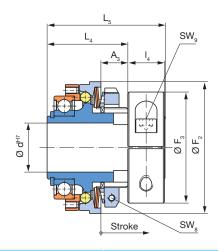

Dimensions I	Dimensione [mm]		ze
Dimensions [mm]		03	02
Α		7.2	9.5
C ₃		28	33.5
D ₁		30	36
E		40	47
F		37	42
F ₂		45	50
f	f		30
f ₂		-	3
f ₄		-	37
Minimum	$g_{_4}$	11.5	15.5
shaft length	g ₅	12.5	16
h		24	29
k ₁		2	2
L ³⁾		28.5	34.5
L ₁ 3)		58.5	70.5
$L_{\scriptscriptstyle 2}$		49.3	59
l ₁ 3)		14	21
		9.5	15

Bores [mm]		m1	Size				
Dore	s [IIII	11]	03	02			
	d	d _{min}	6	8			
EAS®-	u	d _{max}	12	15			
EAsic	al	d _{P min}	6	8			
	d _P	d _{P max}	11	16 ²⁾			
_ 0	d	d _{1 min}	6	8			
be -sid	d ₁	d _{1 max}	12	15			
Steel bel- lows-side	d	d _{2 min}	6	8			
S	a ₂	d _{2 max}	11	16 ²⁾			

- Further sizes for smaller and larger torques available on request
 Up to Ø 14 keyway acc. DIN 6885/1, over Ø 14 keyway acc. DIN 6885/3
 Dimensions in untensioned condition (shorter in tensioned condition)

EAS®-compact® Options

EAS®-compact® with adjusting nut for radial torque adjustment


The EAS®-compact® can be equipped with an adjusting nut for radial torque adjustment if the clutch cannot be accessed axially due to narrow installation conditions.

On this variant, the graduation for reading and adjusting the torque is mounted radially visible on the outer diameter.

Dimensione [mm]	Size							
Dimensions [mm]	01	0	1	2	3			
$A_{\!\scriptscriptstyle 2}$	12	13.5	16	17	20.5			
F,	61	73	88	104	125			
F ₂	70	85	100	115	135			
X	8	8	10	10	10			
X	3.5	3.5	4	4	4			

EAS®-compact® with clamping ring

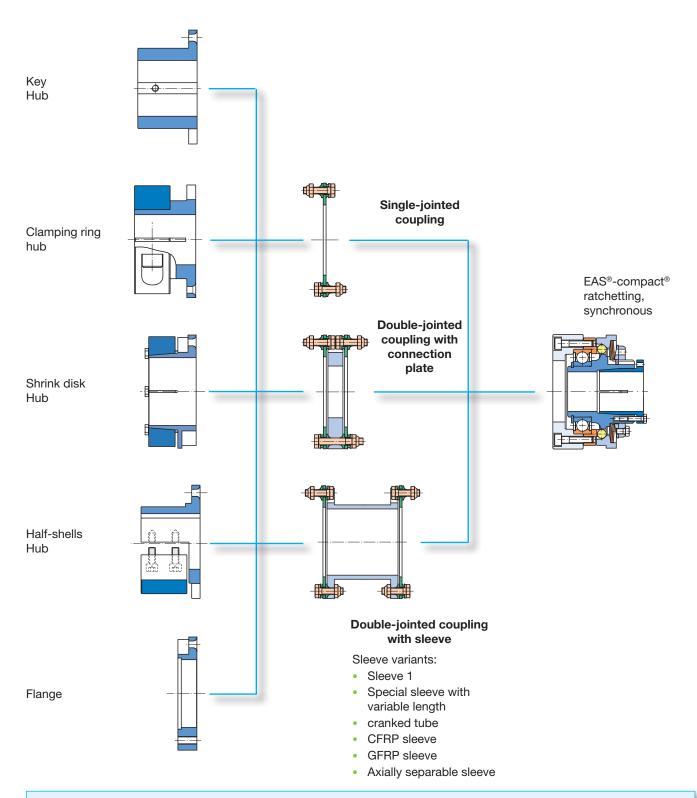
EAS®-compact® clutches with clamping ring hub can be mounted extremely quickly and easily onto the shaft. The slotted clamping ring is tensioned using one single screw. Due to the equipment with an adjusting nut for radial torque adjustment, the limit torque for overload can be altered even in installed condition.

Dimensions [mm]	Size							
	01	0	1	2	3			
A_3	15.5	19	20.5	23.5	26			
F ₂	70	85	100	115	135			
F ₃	60	72	84	97	115			
L ₄	43.5	53.5	63.5	70.5	80.5			
L ₅	65	77	90	103	117			
I ₄	18	22	26	32	36			

Bores [mm]		Size							
		01	0	1	2	3			
d ^{H7 1)}	d _{min}	10	15	22	32	35			
a ,	d _{max}	25	32	40	45	55			

1) For transmittable torques dependent on bore, see Table 1.

Frictionally-locking transmittable torques T _R [Nm] EAS®-Compact® with clamping ring						
			Size			
Bore	01	0	1	2	3	
Ø 10	44	-	-	-	-	
Ø 12	52	-	-	-	-	
Ø 14	61	-	-	-	-	
Ø 16	69	101	-	-	-	
Ø 18	78	113	-	-	-	
Ø 20	87	126	-	-	-	
Ø 22	96	138	199	-	-	
Ø 25	109	168	226	327	-	
Ø 28	-	201	253	366	523	
Ø 30	-	216	290	420	561	
Ø 32	-	230	325	470	598	
Ø 35	-	-	355	515	700	
Ø 38	-	-	386	559	798	
Ø 40	-	-	406	588	840	
Ø 45	-	-	-	661	945	
Ø 50	-	-	-	-	1050	
Ø 55	-	-	-	-	1155	

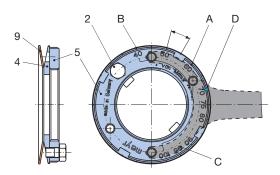

Table 1

Screws						Size		
Screws				01	0	1	2	3
	Number, dimensions	M ₈	[mm]	1 x M4	1 x M5	1 x M6	1 x M6	1 x M8
Locking screw in adjusting nut	Wrench opening	SW ₈	[mm]	3	4	5	5	6
in adjusting nut	Tightening torque	T _A	[Nm]	3	5.5	9.5	9.5	23
	Number, dimensions	M ₉	[mm]	1 x M6	1 x M8	1 x M10	1 x M12	1 x M14
In the clamping ring	Wrench opening	SW ₉	[mm]	5	6	8	10	12
	Tightening torque	T _A	[Nm]	16	40	79	135	220

EAS®-compact® Options

EAS®-Compact® torsionally rigid Modular Structure

All EAS®-compact® ratchetting and synchronous clutches can be combined with almost all components of the ROBA®-DS backlash-free shaft coupling. For a current selection of different Types, please see pages 16 and 17.


We are happy to advise you on the dimensioning and configuration of your optimum design.

Readable Torque Adjustment

The EAS®-compact®overload clutch offers easily readable torque adjustment on the adjusting nut (for Sizes 01 to 3). This readability makes adjusting the torque far more simple, and also allows easy checks on the set release value on the installed clutch.

- The limit torque can be finely adjusted and accurately read due to the adjusting nut with the fine thread and the easily-readable graduation scale.
- The positive-locking (or frictionally-locking) safeguard on the adjusting nut protects against self-turning, inadvertent adjustment of the set limit torque. The integral blocking protection prevents the cup springs from becoming spring-bound.

Illustrations 1: EAS®-compact® ratchetting and synchronous clutch

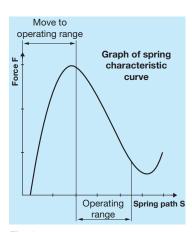


Fig. 3 (The diagram only serves as an example)

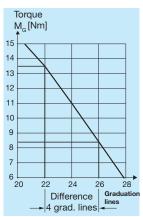
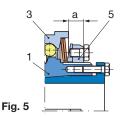


Fig. 4
(The diagram only serves as an example)

Depending on the drive and the drive constellation, torque peaks (e.g. via start-up torque impacts on asynchronous motors) can occur which lie substantially above the system (motor) operating torque. This behaviour is to be taken into account customer-side when dimensioning or adjusting the clutch.

Torque Adjustment

Adjustment takes place by turning the adjusting nut (5) (Sizes 03 to 3) or the set screws (6) (Sizes 4 and 5).

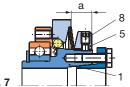

The installed cup springs (9) are operated in the negative range of the characteristic curve (Fig. 3). A stronger pre-tension produces a dropping in spring force. Turning the adjusting nut (5) (Sizes 03 to 3) or the set screws (6) (Sizes 4 and 5) clockwise therefore produces a decrease in spring force. Turning it anti-clockwise produces an increase in torque (facing direction towards the adjusting nut (5) – Figs. 1 and 2).

If no other torque adjustment is requested customer-side, the EAS®-compact® ratchetting and synchronous clutches are generally set and marked (calibrated) manufacturer-side to approx. 70 % of the respective maximum torque. The respective torque adjustment or the adjustable torque range are visible on the type tag.

A control "spring operation in the operating range" can be carried out via the dimension "a".

EAS®-compact® ratchetting and synchronous clutch (Sizes 01 - 3): Dimension "a" is the distance between the adjusting nut facing-side (5) to the thrust washer facing-side (3) (Fig. 5).

For the corresponding data, please see the Installation and Operational Instructions.


EAS®-NC Sizes 03 and 02 must be adjusted according to the Adjustment Diagram (please order if necessary) if no adjustment or calibration was made manufacturer-side.

EAS®-NC Size 03 (Fig. 7):

- Unscrew both set screws (8) from the adjusting nut (5).
- Grease the thread surfaces on the adjusting nut (5) and the hub
 (1).
- Set the adjusting nut (5) to the required dimension "a" (acc. Adjustment Diagram) using a hook wrench.
- Paint both set screws (8) with Loctite 243, screw them into the adjusting nut (5) and tighten them.

EAS®-NC Size 02 (Fig. 8 and Fig. 4):

- Loosen the locking screw (2).
- Grease the thread and contact surfaces on the adjusting nut (5), the locking ring (4) and the hub (1).
- The adjusting nut (5) is adjusted by hand up to contact on the cup springs (9).
- Continue to turn until the four notches on the circumference of the adjusting nut (5) and the notches in the locking ring (4) align.
- Turn the adjusting nut (5) further using a face wrench to the number of graduation lines which equal the required torque (Fig. 4, number of graduation lines in the Adjustment Diagram). The 4 notches on the circumference of the adjusting nut (5) and on the locking ring (4) must be in the same position.
- Paint the locking screw (2) with Loctite 243 and screw it into the adjusting nut (5).

Adjusting the Torque

Sizes 01 to 3 (Figs. 1, 2 and 6):

 Convert the required torque (acc. formula below) in percent of the maximum adjustment value.

Required torque adjustment	— x 100 = Adjustment in %
Max. torque adjustment	X 100 = Aujustinent in 70
(see Table Technical Data)	

- · Loosen the locking screw (2) in the adjusting nut (5).
- Turn the adjusting nut (5) clockwise or anti-clockwise according to the engraved adjustment scale (Figs. 1 and 2) using a hook wrench or a face wrench, until the required torque is set.
- The required torque results from the marking overlap (D) on the locking ring (4) and the percent value (C) on the adjusting nut (5), see Fig. 1.
- Paint the locking screw (2) with Loctite 243 and screw it into the
 adjusting nut (5); the 4 notches (A) in the adjusting nut (5) and the
 notches (B) in the locking ring (4) must be in the same position
 (Fig. 1). Correct slightly if necessary.

Example:

EAS®-compact® Size 3, Type 490.610.0 ($M_{\rm G}$ max. = 350 Nm): Torque pre-adjustment = 70 % of $M_{\rm G}$ max. = 245 Nm. The adjustment should be increased from 245 Nm to 280 Nm.

 \bullet Define the torque adjustment in percent of $\rm M_{\rm g}$ max. using the formula below:

280	v 100 00 0/
350	x 100 = 80 %

 Turn the adjusting nut (5) according to the facing-side graduation scale Fig. 1) anti-clockwise from 70 % to 80 % on the adjustment scale using a face wrench.

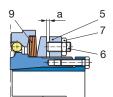


Fig. 9

Size 4 (Figure 9):

The torque is changed exclusively via the set screws (6) and not via the adjusting nut (5).

- Loosen all hexagon nuts (7).
- Adjust all set screws (6) evenly to the required dimension "a" using a hexagon socket wrench (dimension "a" see adjustment table glued onto the clutch).
- Counter the set screws (6) again using hexagon nuts (7).

<u>^!\</u>

After de-installing the clutch (e.g. due to cup spring replacement or changes to the cup spring layering), the clutch must be re-adjusted.

Permitted Bearing Load

The output element is centred on the deep groove ball bearing (tolerance H7/h5) and bolted together with the pressure flange (3).

If the resulting radial force from the output element is anywhere near the centre of the ball bearing and under the maximum permitted radial load according to Table 1, an additional bearing for the output element is unnecessary.

No appreciable axial forces (see Table 1) should be transferred from the output element onto the clutch pressure flange (3).

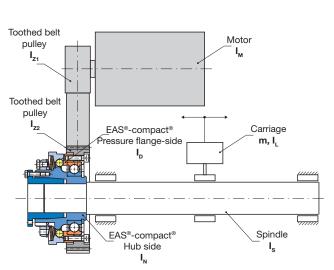

Permitted							Size				
bearing load			03	02	01	0	1	2	3	4	5
Axial forces	F _A	[kN]	0.12	0.28	0.65	1	1.5	2.4	4.2	5	7.7
Radial forces	F_{R}	[kN]									
1-bearing design	1		0.1	0.25	0.65	1	1.5	2.4	4.2	5	-
2-bearing design	1		0.15	0.375	1	1.5	2.25	3.6	6.3	7.5	11.5
Transverse force torques*	M _Q	[Nm]	0.5	1.5	5	10	20	30	40	50	70

Table 1

* Torques, which put strain on the deep groove ball bearing due to the non-centric axial forces having an effect on the pressure flange.

Size Selection, Energy Calculation, **Torque Adjustment for Horizontal Servo Axes**

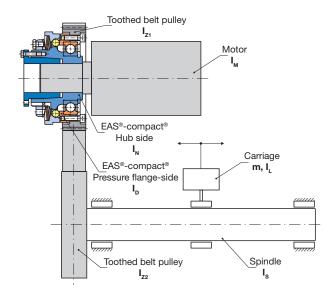


Fig. 1 Fig. 2

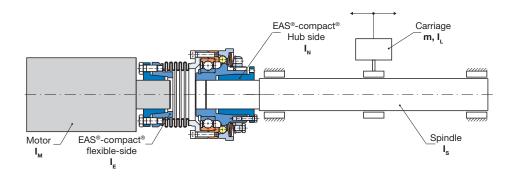


Fig. 3

Configuration Fig. 1

Configuration Fig. 2

Configuration Fig. 3

I, from equation (7)

Total mass moment of inertia without EAS®-compact® clutch

$$I_{g} = I_{M} + I_{Z1} + (I_{Z2} + I_{S} + I_{L}) \cdot (\frac{n_{2}}{n_{1}})^{2}$$

$$I_{g} = I_{M} + I_{Z1} + (I_{Z2} + I_{S} + I_{L}) \cdot (\frac{n_{2}}{n_{1}})^{2}$$

$$I_{g} = I_{M} + I_{Z1} + (I_{Z2} + I_{S} + I_{L}) \cdot (\frac{n_{2}}{n_{1}})^{2}$$

$$I_{g} = I_{M} + I_{Z1} + (I_{Z2} + I_{S} + I_{L}) \cdot (\frac{n_{2}}{n_{1}})^{2}$$

$$I_{g} = I_{M} + I_{Z1} + (I_{Z2} + I_{S} + I_{L}) \cdot (\frac{n_{2}}{n_{1}})^{2}$$

$$I_{g} = I_{M} + I_{Z1} + (I_{Z2} + I_{S} + I_{L}) \cdot (\frac{n_{2}}{n_{1}})^{2}$$

$$I_{g} = I_{M} + I_{Z1} + (I_{Z2} + I_{S} + I_{L}) \cdot (\frac{n_{2}}{n_{1}})^{2}$$

$$I_{g} = I_{M} + I_{Z1} + (I_{Z2} + I_{S} + I_{L}) \cdot (\frac{n_{2}}{n_{1}})^{2}$$

$$I_{g} = I_{M} + I_{Z1} + (I_{Z2} + I_{S} + I_{L}) \cdot (\frac{n_{2}}{n_{1}})^{2}$$

$$I_{g} = I_{M} + I_{Z1} + (I_{Z2} + I_{S} + I_{L}) \cdot (\frac{n_{2}}{n_{1}})^{2}$$

$$I_{g} = I_{M} + I_{Z1} + (I_{Z2} + I_{S} + I_{L}) \cdot (\frac{n_{2}}{n_{1}})^{2}$$

$$I_{g} = I_{M} + I_{Z1} + (I_{Z2} + I_{S} + I_{L}) \cdot (\frac{n_{2}}{n_{1}})^{2}$$

$$I_{g} = I_{M} + I_{Z1} + (I_{Z2} + I_{S} + I_{L}) \cdot (\frac{n_{2}}{n_{1}})^{2}$$

$$I_{g} = I_{M} + I_{Z1} + (I_{Z2} + I_{S} + I_{L}) \cdot (\frac{n_{2}}{n_{1}})^{2}$$

$$I_{g} = I_{M} + I_{Z1} + (I_{Z2} + I_{S} + I_{L}) \cdot (\frac{n_{2}}{n_{1}})^{2}$$

$$I_{g} = I_{M} + I_{Z1} + (I_{Z2} + I_{S} + I_{L}) \cdot (\frac{n_{2}}{n_{1}})^{2}$$

$$I_{g} = I_{M} + I_{Z1} + (I_{Z2} + I_{S} + I_{L}) \cdot (\frac{n_{2}}{n_{1}})^{2}$$

$$I_{g} = I_{M} + I_{Z1} + (I_{Z2} + I_{S} + I_{L}) \cdot (\frac{n_{2}}{n_{1}})^{2}$$

$$I_{g} = I_{M} + I_{Z1} + (I_{Z2} + I_{S} + I_{L}) \cdot (\frac{n_{2}}{n_{1}})^{2}$$

$$I_{g} = I_{M} + I_{Z1} + (I_{Z2} + I_{S} + I_{L}) \cdot (\frac{n_{2}}{n_{1}})^{2}$$

$$I_g = I_M + I_{Z1} + (I_{Z2} + I_S + I_L) \cdot (\frac{\Pi_2}{n_1})^2$$

I, from equation (7)

$$I_g = I_M + I_{Ku} + I_S + I_L$$

[kgm²] (1)

Mass moment of inertia drive-side referring to the shaft with the EAS®-compact® clutch

$$I_1 = I_D + I_{Z2} + (I_{Z1} + I_M) \cdot (\frac{n_1}{n_2})^2$$
 $I_1 = I_M + I_N$

$$I_1 = I_M + I_N$$

$$I_1 = I_M + I_E$$

[kgm²] (2)

Mass moment of inertia output-side (spindle-side) referring to the shaft with the EAS®-compact® clutch

$$I_2 = I_N + I_S + I_L$$

$$I_2 = I_D + I_{Z1} + (I_{Z2} + I_S + I_L) \cdot (\frac{n_2}{n_1})^2$$

$$I_2 = I_N + I_S + I_L$$

[kgm²] (3)

I, from equation (7)

I, from equation (7)

I, from equation (7)

Clutch pre-selection

$$M_{erf.} = 1.5 \cdot M_2$$
 M_2 from equation (4)

$$M_{erf.} = 1.5 \cdot M_1$$

$$M_{erf.} = 1.5 \cdot M_1$$

[Nm]

Configuration Fig. 1	Configuration Fig. 2	Configuration Fig. 3		
Torque on the spindle				
$M_2 = M_1 \cdot \frac{n_1}{n_2}$	As configuration Fig. 1	As configuration Fig. 1	[Nm]	(4)
Carriage feed rate				
$V = \frac{p \cdot n_2}{6 \cdot 10^4}$	As configuration Fig. 1	As configuration Fig. 1	[<u>m</u>]	(5)
Angular speed of the motor shaft $\omega_{_1}$ and	the spindle ω_2			
$\omega_1 = \frac{\mathbf{n}_1 \cdot \mathbf{\pi}}{30} \qquad \qquad \omega_2 = \frac{\mathbf{n}_2 \cdot \mathbf{\pi}}{30}$	As configuration Fig. 1	As configuration Fig. 1	[s ⁻¹]	(6)
Mass of the carriage reduced on the spi	ndle			
$I_{L} = m \cdot \frac{V^{2}}{\omega_{2}^{2}}$	As configuration Fig. 1	As configuration Fig. 1	[kgm²]	(7)
v from equation (5), ω_2 from equation (6)				
Energy on collision without EAS®-comp	act [®] clutch			
$W_{g} = \frac{1}{2} \cdot I_{g} \cdot \omega_{1}^{2}$	As configuration Fig. 1	As configuration Fig. 1	[J]	(8)
I_g from equation (1), ω_1 from equation (6)	a . I . I .			
Energy on collision with EAS®-compact		1		
$W_2 = \frac{1}{2} \cdot I_2 \cdot \omega_2^2$	$W_2 = \frac{1}{2} \cdot I_2 \cdot \omega_1^2$	$W_2 = \frac{1}{2} \cdot I_2 \cdot \omega_1^2$	[J]	(9)
${\rm I_2}$ from equation (3), $\omega_{\rm 2}$ from equation (6)	$\rm I_2$ from equation (3), $\omega_{\rm 1}$ from equation (6)	$\rm I_2$ from equation (3), ω_1 from eq.(6)		
Remaining residual energy				
$W_{R} = \frac{W_{2}}{W_{g}} \cdot 100$	As configuration Fig. 1	As configuration Fig. 1	[%]	(10
W _g from equation (8), W ₂ from equation (9)				
Uncoupled energy				
$\Delta W = W_g - W_2$ $\Delta W = 100 - W_R$	As configuration Fig. 1	As configuration Fig. 1	[J] [%]	(11 (12
W _g from equation (8), W ₂ from equation (9),				
Required disengagement torque in the a		n		
$M_A = M_B \cdot \frac{I_2}{I_2 + I_1} \cdot \frac{n_1}{n_2}$ I, from equation (2), I_2 from equation (3)	Speed ratio $\frac{n_1}{n_2}$ not applicable.	Speed ratio $\frac{n_1}{n_2}$ not applicable	[Nm]	(13
Required disengagement torque in the a	cceleration phase (axis in any direction)	ποι αρμισαδίε		
		$M = I(M - M) \cdot \frac{I_2}{I_2} + M \cdot I \times 1.2$	[Nm]	(14)
n_2 $I_2 + I_1$ I_1 I_2 I_3	$M_{A} = [(M_{B} - M_{L} \cdot \frac{n_{2}}{n_{1}}) \cdot \frac{l_{2}}{l_{2} + l_{1}} + M_{L} \cdot \frac{n_{2}}{n_{1}}] \times 1.2$ $M_{L} \text{ from equation (15)}$	M_{A} M_{C} M_{B} M_{C} M_{B} M_{C} M_{C	[]	(,
Load torque from carriage mass in any o	lirection			
$M_{L} = \frac{m \cdot g \cdot \sin \alpha \cdot p}{2 \cdot \pi \cdot 1000}$	As configuration Fig. 1	As configuration Fig. 1	[Nm]	(15
α Spindle				
Limit torque adjustment				
$M_G = 1.5 \cdot M_2$ M_2 from equation (4)	$M_{G} = 1.5 \cdot M_{1}$	$M_g = 1.5 \cdot M_2$ M_g from equation (4)	[Nm]	(16
Condition: The disengagement torque Notation torque M _G set on the clutch.	$M_{\rm A}$ from equation (13) or (14) (multiplied by a fact	or of 1.2) must be smaller than the		

Calculation Example

Configuration as shown in Fig. 1

Data:

Mass of the carriage = 560 kg $= 0.0037 \text{ kgm}^2$ Mass moment of inertia of the motor Mass moments of inertia of the $= 0.0006 \text{ kgm}^2$ Toothed belt pulleys $= 0.01132 \text{ kgm}^2$ Mass moment of inertia of the spindle $= 0.00067 \text{ kgm}^2$ Drive speed of the motor = 2000 rpm Speed of the spindle = 1000 rpmPitch of the spindle Nominal torque of the motor Max. torque of the motor = 40 Nm

Clutch pre-selection

$$M_{erf.} = 1.5 \cdot M_2$$
 M_a from equation (4)

$$M_{erf} = 1.5 \cdot 28 = 42$$

Selected:

EAS®-compact® Size 0, Type 490.610.0 Torque range $M_g = 20 \div 50 \text{ Nm}$ (see Technical Data, page 9)

Total mass moment of inertia of the EAS®-compact®

Hub side $I_N = 0.000531 \text{ kgm}^2$ (see Techn. Data, page 9)

Pressure flange side $I_{\rm D} = 0.000234~{\rm kgm^2}$ (see Techn. Data, page 9)

Total mass moment of inertia without EAS®-compact® clutch

$$I_g = I_M + I_{Z1} + (I_{Z2} + I_S + I_L) \cdot (\frac{n_2}{n_1})^2$$
 I_L from equation (7)
 $I_g = 0.0037 + 0.0006 + (0.01132 + 0.00067 + 0.00142) \cdot (\frac{1}{n_1})^2$

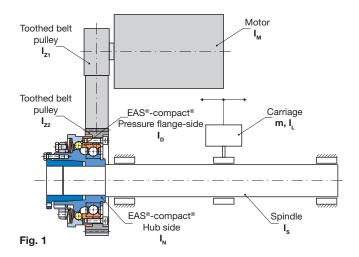
 $I_{g} = 0.0037 + 0.0000 + (0.01132 + 0.00007 + 0.00142) \cdot (2000)^{-1}$ $I_{g} = 0.00765$ [kgm²] (1)

Mass moment of inertia drive-side referring to the shaft with the EAS®-compact® clutch

$$I_1 = I_D + I_{Z2} + (I_{Z1} + I_M) \cdot (\frac{n_1}{n_2})^2$$

$$I_1 = 0.000234 + 0.01132 + (0.0006 + 0.0037) \cdot (\frac{2000}{1000})^2$$

 $I_1 = 0.0287$ [kgm²] (2)


Mass moment of inertia output-side (spindle-side) referring to the shaft with the EAS®-compact® clutch

Torque on the spindle

$$M_2 = M_1 \cdot \frac{n_1}{n_2} = 14 \cdot \frac{2000}{1000} = 28$$
 [Nm] (4)

Carriage feed rate

$$v = \frac{p \cdot n_2}{6 \cdot 10^4} = \frac{10 \cdot 1000}{6 \cdot 10^4} = 0.1667 \qquad \left[\frac{m}{s}\right] \quad (5)$$

Angular speed of the motor shaft ω_1 and the spindle ω_2

$$\omega_1 = \frac{\mathbf{n}_1 \cdot \mathbf{\pi}}{30} = \frac{2000 \cdot \mathbf{\pi}}{30} = \mathbf{209}$$
 [s⁻¹] (6)

$$\omega_2 = \frac{n_2 \cdot \pi}{30} = \frac{1000 \cdot \pi}{30} = 104.7$$
 [s⁻¹] (6)

Mass of the carriage reduced on the spindle

$$I_L = m \cdot \frac{v^2}{\omega_0^2}$$
 = 560 \cdot \frac{0.1667^2}{104.7^2} = **0.00142** [kgm²] (7)

v from equation (5), ω_2 from equation (6)

Energy on collision without EAS®-compact® clutch

$$W_g = \frac{1}{2} \cdot I_g \cdot \omega_1^2 = \frac{1}{2} \cdot 0.00765 \cdot 209^2 = 167$$
 [J] (8)

I_a from equation (1), ω_1 from equation (6)

Energy on collision with EAS®-compact® clutch

$$W_2 = \frac{1}{2} \cdot I_2 \cdot \omega_2^2 = \frac{1}{2} \cdot 0.00262 \cdot 104.7^2 = 14$$
 [J] (9)

 I_2 from equation (3), ω_2 from equation (6)

Remaining residual energy

$$W_{R} = \frac{W_{2}}{W_{g}} \cdot 100 = \frac{14}{167} \cdot 100 = 8.4$$
 [%] (10)
 W_{g} from equation (8), W_{g} from equation (9)

Uncoupled energy

$$\Delta W = W_g - W_2$$
 = 167 - 14 = **153** [J] (11)
 $\Delta W = 100 - W_B$ = 100 - 8.4 = **91.6** [%] (12)

Required disengagement torque in the acceleration phase (horizontal axis)

$$M_{A} = M_{B} \cdot \frac{I_{2}}{I_{2} + I_{1}} \cdot \frac{n_{1}}{n_{2}} \quad I_{1} \text{ from equation (2)}$$

$$M_{A} = 40 \cdot \frac{0.00262}{0.00262 + 0.0287} \cdot \frac{2000}{1000} = \textbf{6.7} \quad [Nm] \quad (13)$$

Limit torque adjustment

$$M_{G} = 1.5 \cdot M_{2} = 1.5 \cdot 28 = 42$$
 [Nm] (16)

Condition: The disengagement torque 1.2 \cdot M_A = 1.2 \cdot 6.7 = 8.04 Nm is smaller than the torque M_G = 42 Nm set on the clutch.

Key	/S	
l _g	[kgm²]	Total mass moment of inertia without EAS®-compact® clutch
I ₁	[kgm²]	Mass moment of inertia drive-side referring to the shaft with the EAS®-compact® clutch
l ₂	[kgm²]	Mass moment of inertia output-side (spindle-side) referring to the shaft with the EAS®-compact® clutch
I _M	[kgm²]	Mass moment of inertia of the motor
I _{Z1}	[kgm²]	Mass moment of inertia of the motor-side toothed belt pulley
I _{Z2}	[kgm²]	Mass moment of inertia of the second toothed belt pulley
Is	[kgm²]	Mass moment of inertia of the spindle
ľ	[kgm²]	Mass of the carriage reduced on the spindle
I _N	[kgm²]	Mass moment of inertia of the EAS®-compact®, hub-side
I _D	[kgm²]	Mass moment of inertia of the EAS®-compact®, pressure flange-side
I _E	[kgm²]	Mass moment of inertia of the EAS®-compact®, flexible coupling
I_{Ku}	[kgm²]	Mass moment of inertia of the double shaft connection before installation of the EAS®-compact® clutch
M_1	[Nm]	Motor nominal torque
M_2	[Nm]	Torque on the spindle
M_A	[Nm]	Required disengagement torque in the acceleration phase
$M_{\scriptscriptstyle B}$	[Nm]	Maximum motor torque
$M_{\rm G}$	[Nm]	Limit torques for overload
M_L	[Nm]	Load torque from the carriage mass in any direction
$M_{erf.}$	[Nm]	Required torque (pre-selection of the clutch)
g	[m·s ⁻²]	Gravitational acceleration
m	[kg]	Carriage mass
n ₁	[rpm]	Drive speed on the motor (rapid movement)
n_2	[rpm]	Spindle speed (rapid movement)
р	[mm]	Spindle pitch
V	[m·s ⁻¹]	Carriage feed rate
W_g	[J]	Total energy on collision without EAS®-compact® clutch
W_2	[J]	Energy on collision with EAS®-compact® clutch
W_{R}	[%]	Remaining residual energy
ΔW	[J]	Uncoupled energy
ΔW	[%]	Uncoupled energy
$\omega_{_1}$	[S ⁻¹]	Angular speed of the motor shaft
ω_{2}	[S ⁻¹]	Angular speed of the spindle

Frictionally-locking Transmittable Torques

Table 1: Assignment of the bore diameters d_3/d_4 on the flexible coupling to the transmittable torque "T_R" EAS®-compact® synchronous and ratchetting clutches Types 494._0_._/494._1_._

					Size					
			Bore		04	0				
			Doie	d ₃	01 34	0	1	2	3	4
			Ø 15	d ₃	56	-	-	-	-	-
				d ₃	36	-	-	-	_	-
			Ø 16	d ₃	62	-	-	-		
				d ₄	43	79	-	-	-	-
			Ø 19	d ₃	81	141	_	_	-	-
				d ₃	45	83	83	-	-	-
			Ø 20	d ₄	87	153	197	_	_	_
				d ₃	50	91	91	_	_	_
			Ø 22	d ₄	100	177	228	_	-	-
				d ₃	54	100	100	_	_	-
			Ø 24	d ₄	120	203	261	-	_	-
				d ₃	57	104	104	-	_	-
			Ø 25	d ₄	125	216	279	-	_	_
				d ₃	63	116	116	208	_	-
			Ø 28	d ₄	135	256	332	300	-	-
			A	d ₃	-	124	124	228	-	-
			Ø 30	d ₄	-	282	368	350	-	-
			~ ~ ~ ~	d ₃	-	133	133	248	-	-
Frictionally-			Ø 32	d ₄	-	308	405	400	-	-
locking transmittable			~ ^-	d ₃	-	145	145	280	350	-
Clamping hub Ø d ₃ Valid for F7/k6 Shrink disk hub Ø d ₄ Valid for H7/k6 The transmittable torques of the clamping connection take the max. tolerance backlash of the shaft tolerance k6/ bores F7 or H7 into account. If the tolerance backlash is larger, the torque decreases.			Ø 35	d ₄	-	343	460	500	450	-
				d ₃	-	-	158	315	390	-
			Ø 38 Ø 40	d_4	-	373	513	600	500	-
				d ₃	-	-	166	340	420	-
				d ₄	-	-	547	680	600	-
	T _R	[Nm]	Ø 42	d_3	-	-	174	365	455	-
				d_4	-	-	577	730	720	-
			Ø 45	d ₃	-	-	187	404	505	545
			Ø 1 3	d ₄	-	-	617	790	850	1402
			Ø 48	d ₃	-	-	-	442	560	590
			<i>D</i> 40	d ₄	-	-	-	850	1000	1596
			Ø 50	d ₃	-	-	-	470	600	630
				d ₄	-	-	-	880	1180	1731
			Ø 52	d ₃	-	-	-	-	640	662
				d ₄	-	-	-	-	1270	1873
			Ø 55	d ₃	-	-	-	-	705	710
				d ₄	-	-	-	-	1353	2095
			Ø 58	d ₃	-	-	-	-	1/00	764
				d ₄	-	-	-	-	1428	2308 800
			Ø 60	d ₄	-	-	-	-	1471	2420
				d ₄	-	-	-	-	-	840
			Ø 62	d ₃	-	-	-	-	_	2570
				d ₃	-	-	-	-	-	900
			Ø 65	d ₄	-	-	-	-	-	2750
				d ₃	-	-	-	_	-	954
			Ø 68	d ₄	-	-	-	-	-	2989
		-	Ø 70	d ₃	-	-	-	-	-	990
				d ₄	-	-	-	-	-	3157
			C 70	d ₃	-	-	-	-	-	1032
			Ø 72	d ₄	-	-	-	-	-	3306
			α	d ₃	-	-	-	-	-	1095
			Ø 75	d ₄	-	-	-	-	-	3550
			Ø 79	d ₃	-	-	-	-	-	1158
			Ø 78	d_4	-	-	-	-	-	-
			Ø 80	d ₃	-	-	-	-	-	1200
			ν ου 	d_4	-	-	-	-	-	-

Limit Switch Type 055.00_.5 (Contactless)

Application

This device is used for measuring and monitoring axial and radial disengagement movements, e.g. on EAS®-clutches. It acts as a control sensor for electronic and mechanical sequences.

Function

When the sensor surface of the NAMUR sensor scans a metal control flag (damped), the signalling relay is triggered, is deenergised and drops. Contacts 1 - 2 are opened. Damping is possible from all sides.

Electrical Connection (Terminals)

1 – 2 – 3 Floating change-over contacts 5 – 6 Connection input voltage

Design

The electronic amplifier is installed in a light metal housing. The limit switch is fixed using two screw-on mounting links attached diagonally with M4 cap screws.

Technical data

Input voltage 230 VAC, $\pm 10~\%$, 50 - 60 Hz (dependent on design) 115 VAC, $\pm 10~\%$, 50 - 60 Hz

24 VDC, PELV, ±5 %,

protected against reverse polarity, for overvoltage category II connection

Power consumption Max. 1.5 VA

Ambient temperature -10 °C up to +60 °C limit switch

-25 °C up to +60 °C NAMUR sensor

Protection IP54

Conductor cross-section Max. 2.5 mm² / AWG 14

Weight 400 g / 14 oz

Device fuses 0.1 A/fast acting at 24 VDC (in system)

Signalling relay Floating change-over contacts
Contact load max. 250 VAC / 12 A

Contact load max. 250 VAC / 12 A Contact material AgNi 90/10 max. switching frequency 20 Hz at min. load, 0.1 Hz at max. load

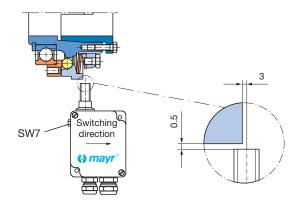
ching distance S_n 2 mm, flush fitting, max. switching frequency 2 kHz, the

zero point can be set per

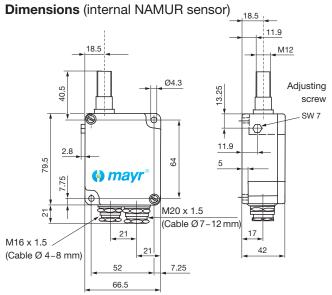
1 mm by means of the lateral adjusting

screw SW 7

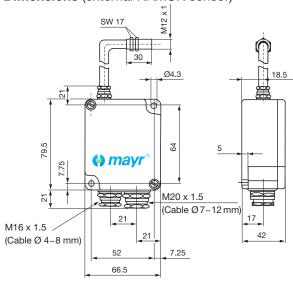
NAMUR sensor external Metal housing M12 x 1, switching


distance S_n 2 mm, flush fitting, max. switching frequency 2 kHz, stan-

dard cable length 2 m,


max. 100 m on special design, protec-

tion IP67


Installation

Dimensions (external NAMUR sensor)

Order Number 0 5 5 . 0 0 __ . 5 / __ Contactless sensing Connection voltage Sensor external 1 230 VAC Sensor internal 2 115 VAC 24 VDC

Limit Switch Type 055.000.5 (Mechanical Operation)

Application

This device is used to monitor mechanical movements and end positions. It is a controlling sensor for electronic and mechanical sequences. It also detects axial disengagement movements, e.g. on EAS®-clutches.

Function

The pre-tensioned contact is discharged by actuating the switching lever:

Contacts 11 - 14 (21 - 24) open, contacts 11 - 12 (21 - 22) close.

Design

The microswitch is fitted into a light metal housing and is actuated by a switching lever. Operation is only possible in one direction. The limit switch is fixed using two screw-on mounting links attached diagonally with M4 cap screws.

Technical data

Contact 1 change-over contact

(special design: 2 change-over

contacts)

Switching power 250 VAC / 15 A (with 2 change-over

contacts: 10 A)

24 VDC / 6 A 60 VDC / 1.5 A 250 VDC / 0.2 A min. 12 VDC / 10 mA

Contact material AgSnO

Switching frequency

operations/min

Ambient temperature: -10 °C up to +85 °C

Protection IP54 Weight 275 g

Switching travel setting Using the adjusting screw (SW 7),

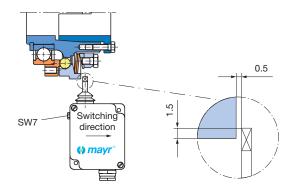
the zero point can be moved right or

left by max. 5 mm

Max. 200 switching

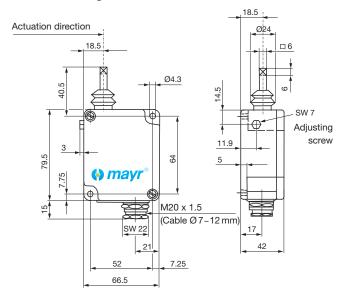
Switching travel Pretravel: min. 0.15 to 0.5 mm

Overtravel: max. 10 mm,

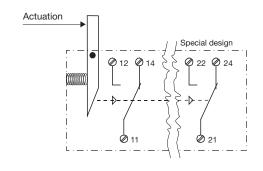

depending on the zero point setting

Different switching lever lengths as

well as a design with 2 change-over contacts are possible on request


Installation

Special types



Detail drawing

Electrical connection

Order Number

0 5 5 . 0 0 0 . 5

Limit Switch Type 055.010.6 (Mechanical Operation, Multi-directional)

Application

The limit switch is used to monitor and measure axial or radial mechanical movements and adjustments e.g. on EAS®-clutches. The device is suitable for clutches with a minimum stroke of 1.1 mm with radial actuation and 0.9 mm with axial actuation.

Function

By actuating the metal tappet, contacts 11 - 12 are opened.

Electrical Connection (Terminals)

11 – 12 NC contact

Technical data

Contact 1 x NC contact,

positive opening contacts

Contact (Special Design) additional 1 x NO contact, terminals

23 - 24, galvanically separated (Zb)

Contact-opening see Switching Travel Diagram

Contact-closing see Switching Travel Diagram

Contact-load NC contact 250 VAC / 2.5 A

24 VDC / 1 A min. 12 VDC / 10 mA

Contact distance 250 VAC >1,25 mm axial, forced opening

Contact distance 24 VDC <1.25 mm, min. 0.5 mm

Contact material Ag90Ni10

Max. input current acc. DIN EN 60947-5-1

AC15 / DC13

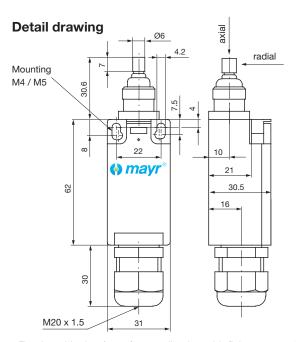
Metal tappet travel max. 4 mm axial or radial

Switching frequency max. 100/min.

Mechanical lifetime 1 x 10⁶ switching cycles, unloaded

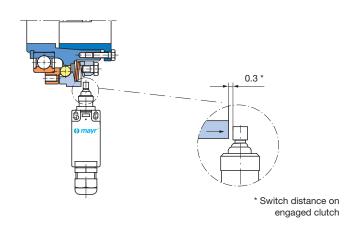
Conductor cross-section 1.5 mm² / AWG 16 Ambient temperature: -30 °C up to +80 °C

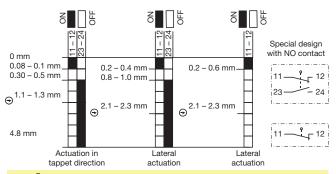
Protection IP65


Protection insulation acc. Protection Class II

Housing thermoplastic, self extinguishing

acc. UL94-V0


Weight 120 g / 4.2 oz



Fixed positioning for safety application with fixing screws 2 x M5 (DIN 912).

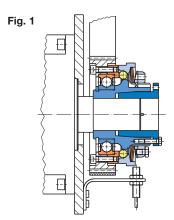
Installation

Switching travel diagram

Do not install switch so that it drags and observe max. actuation travel (travel of metal tappet).

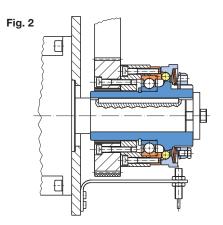
Order Number

0 5 5 . 0 1 0 . 6


Installation Examples

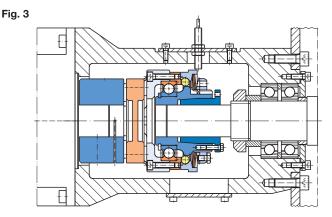
EAS®-compact® short hub

The drive elements of the EAS®-compact® short hub are centred on the deep groove ball bearing and are screwed together with the pressure flange. If the resulting radial force from the drive element is anywhere near the centre of the ball bearing, an additional bearing for the drive element is unnecessary.



The screw quality and the tightening torque for the fixing screws of the drive element are to be selected so that the set limit torque can be safely transmitted using frictional locking.

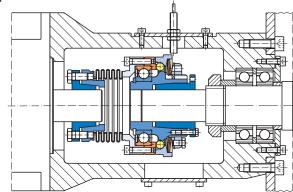
EAS®-compact® long protruding hub


The EAS®-compact® long protruding hub is recommended for very wide drive elements or for elements with very small diameters. On a small diameter, the drive element is screwed together via a customer-side intermediate flange with the clutch pressure flange. Ball bearings, needle bearings or plain bearings are suitable as bearings for the drive element, depending on the installation situation and the installation space.

EAS®-compact® with flexible shaft coupling

The EAS®-compact® with a backlash-free, torsionally flexible and vibration-damping shaft coupling for the connection of two shafts. The couplingcompensatesforaxial,radialandangularshaftmisalignments. In comparison to the EAS®-compact® with steel bellows coupling, this product is torsionally flexible to a small extent in the circumferential direction.

In the installation example on the right, the EAS®-compact® lastic is mounted backlash-free between the rotor and a ball screw spindle. The torque is transmitted backlash-free up to the point of disengagement and drops immediately on overload. The contactless limit switch (sensor) emits a signal to switch off the drive.


EAS®-compact® with steel bellows coupling

The EAS®-compact® with a torsionally rigid flexible steel bellows coupling for the connection of two shafts. The coupling compensates for axial, radial and angular shaft misalignments. It is torsionally rigid in the circumferential direction.

In comparison with the EAS®-compact® with ROBA®-D coupling, the EAS®-compact® with steel bellows coupling has a lower mass moment of inertia.

In the installation example on the right, the EAS®-compact® with steel bellows coupling is mounted between the rotor and a ball screw spindle. The torque is transmitted backlash-free up to the point of disengagement and drops immediately on overload. The contactless limit switch (sensor) emits a signal to switch off the drive.

Product Summary

Torque Limiters/Overload Clutches

■ EAS®-compact®/EAS®-NC/EAS®-smartic®

Positive locking and completely backlash-free torque limiting clutches

■ EAS®-reverse

Reversing re-engaging torque limiting clutch

☐ EAS®-element clutch/EAS®-elements

Load-disconnecting protection against high torques

EAS®-axial

Exact limitation of tensile and compressive forces

■ EAS®-Sp/EAS®-Sm/EAS®-Zr

Load-disconnecting torque limiting clutches with switching function

ROBA®-slip hubs

Load-holding, frictionally locked torque limiting clutches

■ ROBA®-contitorque

Magnetic continuous slip clutches

■ EAS®-HSC/EAS®-HSE

High-speed torque limiters for high-speed applications

shaft couplings

smartflex®/primeflex®

Perfect precision couplings for servo and stepping motors

■ ROBA®-ES

Backlash-free and damping for vibration-sensitive drives

■ ROBA®-DS/ROBA®-D

Backlash-free, torsionally rigid all-steel couplings

ROBA®-DSM

Cost-effective torque-measuring couplings

Electromagnetic Brakes/Clutches

■ ROBA-stop® standard

Multifunctional all-round safety brakes

■ ROBA-stop®-M motor brakes

Robust, cost-effective motor brakes

ROBA-stop®-S

Water-proof, robust monoblock brakes

■ ROBA®-duplostop®/ROBA®-twinstop®/ROBA-stop®-silenzio®

Doubly safe elevator brakes

■ ROBA®-diskstop®

Compact, very quiet disk brakes

■ ROBA®-topstop®

Brake systems for gravity loaded axes

■ ROBA®-linearstop

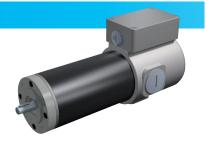
Backlash-free brake systems for linear motor axes

■ ROBA®-guidestop

Backlash-free holding brake for profiled rail guides

■ ROBATIC®/ROBA®-quick/ROBA®-takt

Electromagnetic clutches and brakes, clutch brake units



tendo®-PM

Permanent magnet-excited DC motors

Chr. Mayr GmbH + Co. KG Eichenstraße 1, D-87665 Mauerstetten Tel.: +49 83 41/8 04-0, Fax: +49 83 41/80 44 21 www.mayr.com, E-Mail: public.mayr@mayr.com

Service Germany/Austria

Baden-Württemberg

Esslinger Straße 7 70771 Leinfelden-Echterdingen Tel.: 07 11/78 26 26 40

Fax: 07 11/78 26 26 39

Bavaria

Industriestraße 51 82194 Gröbenzell Tel.: 0 81 42/50 19 80-7

North

Schiefer Brink 8 32699 Extertal Tel.: 0 57 54/9 20 77

Fax: 0 57 54/9 20 78

Chemnitz

Bornaer Straße 205 09114 Chemnitz Tel.: 03 71/4 74 18 96

Fax: 03 71/4 74 18 95

Rhine-Main

36043 Fulda

Franken

Unterer Markt 9 91217 Hersbruck

Tel.: 0 91 51/81 48 64 Fax: 0 91 51/81 62 45

Kamen

Herbert-Wehner-Straße 2 59174 Kamen

Tel.: 0 23 07/24 26 79 Fax: 0 23 07/24 26 74

Kohlhäuser Str. 3-5

Tel.: 06 61/96 21 02 15

Austria

Pummerinplatz 1, TIZ I, A27 4490 St. Florian, Austria Tel.: 0 72 24/2 20 81-12

Fax: 0 72 24/2 20 81 89

Branch Offices

Mayr Zhangjiagang Power Transmission Co., Ltd. Fuxin Road No.7, Yangshe Town 215637 Zhangjiagang

Tel.: 05 12/58 91-75 67 Fax: 05 12/58 91-75 66 info@mayr-ptc.cn

Singapore

Mayr Transmission (S) PTE Ltd. No. 8 Boon Lay Way Unit 03-06, TradeHub 21 Singapore 609964

Tel.: 00 65/65 60 12 30 Fax: 00 65/65 60 10 00 info@mayr.com.sg

Great Britain

Mayr Transmissions Ltd. Valley Road, Business Park Keighley, BD21 4LZ West Yorkshire

Tel.: 0 15 35/66 39 00 Fax: 0 15 35/66 32 61 sales@mayr.co.uk

Switzerland

Mayr Kupplungen AG Tobeläckerstraße 11 8212 Neuhausen am Rheinfall

Tel.: 0 52/6 74 08 70 Fax: 0 52/6 74 08 75 info@mayr.ch

France

Mayr France S.A.S. Z.A.L. du Minopole Rue Nungesser et Coli 62160 Bully-Les-Mines Tel.: 03.21.72.91.91

Fax: 03.21.29.71.77 contact@mayr.fr

Mayr Corporation 10 Industrial Avenue Mahwah NJ 07430

Tel.: 2 01/4 45-72 10 Fax: 2 01/4 45-80 19 info@mayrcorp.com

Italy

Mayr Italia S.r.I. Viale Veneto, 3 35020 Saonara (PD) Tel.: 0498/79 10 20

Fax: 0498/79 10 22 info@mayr-italia.it

Representative Office Turkey Kucukbakkalkoy Mah. Brandium Residence R2 Blok D:254

34750 Atasehir - Istanbul, Turkey

Tel.: 02 16/2 32 20 44 Fax: 02 16/5 04 41 72 info@mayr.com.tr

Representatives

Drive Systems Pty Ltd. 8/32 Melverton Drive Hallam, Victoria 3803

Australien Tel.: 0 3/97 96 48 00 info@drivesystems.com.au

Poland

Wamex Sp. z o.o. ul. Pozaryskiego, 28 04-703 Warszawa Tel.: 0 22/6 15 90 80 Fax: 0 22/8 15 61 80

wamex@wamex.com.pl

National Engineering Company (NENCO) J-225, M.I.D.C. Bhosari Pune 411026 Tel.: 0 20/27 13 00 29 Fax: 0 20/27 13 02 29

nenco@nenco.ora

South Korea

Mayr Korea Co. Ltd. 15, Yeondeok-ro 9beon-gil Seongsan-gu 51571 Changwon-si Gyeongsangnam-do. Korea

Tel.: 0 55/2 62-40 24 Fax: 0 55/2 62-40 25 info@mayrkorea.com

MATSUI Corporation 4-7 Azabudai, 2-Chome, Minatoku Tokyo 106-8641

Tel.: 03/35 86-41 41 Fax: 03/32 24 24 07 info@matsui-corp.co.jp

Taiwan

German Tech Auto Co., Ltd. No. 28, Fenggong Zhong Road, Shengang Dist.,

Taichung City 429, Taiwan R.O.C. Tel.: 04/25 15 05 66 Fax: 04/25 15 24 13 abby@zfgta.com.tw

Netherlands

Groneman BV Amarilstraat 11 7554 TV Hengelo OV Tel.: 074/2 55 11 40 Fax: 074/2 55 11 09

aandrijftechniek@groneman.nl

Czech Republic

BMC - TECH s.r.o. Hviezdoslavova 29 b 62700 Brno

Tel.: 05/45 22 60 47 Fax: 05/45 22 60 48 info@bmc-tech.cz

More Representatives:

Belgium, Brazil, Canada, Colombia, Croatia, Denmark, Finland, Greece, Hongkong, Hungary, Indonesia, Israel, Luxembourg, Malaysia, Mexico, New Zealand, Norway, Philippines, Portugal, Romania, Russia, Slovakia, Slovenia, South Africa, Spain, Sweden, Thailand

You can find the complete address for the representative responsible for your area under www.mayr.com in the internet.